Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(A=4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{95.99}\right)\)
\(A=4.\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=\frac{4}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=\frac{32}{99}\)
\(\frac{4}{3}.\frac{4}{7}+\frac{4}{7}.\frac{4}{11}+\frac{4}{11}.\frac{4}{15}+...+\frac{4}{95}.\frac{4}{99}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Leftrightarrow A=\frac{32}{99}\)
\(A=\frac{16}{3.7}+\frac{16}{7.11}+...+\frac{16}{95.99}\)
\(\Leftrightarrow\frac{1}{4}A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow A=\frac{32}{99}:\frac{1}{4}=\frac{128}{99}\)
Dấu chấm là dấu nhân nha bạn. Nhớ k mình nha!
\(\frac{A}{4}=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{95.99}\)
\(\frac{A}{4}=\frac{7-3}{3.7}+\frac{11-7}{7.11}+...+\frac{99-95}{95.99}\)
\(\frac{A}{4}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(A=\frac{4.32}{99}\)
\(4.A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{95}-\frac{1}{99}\\ 4.A=\frac{1}{3}-\frac{1}{99}\\ 4.A=\frac{32}{99}\\ A=\frac{32}{99}:4\\ A=\frac{8}{99}\)
\(A=\frac{4}{3}\times\frac{4}{7}+\frac{4}{7}\times\frac{4}{11}+...+\frac{4}{91}\times\frac{4}{95}+\frac{4}{95}\times\frac{4}{99}\)
\(=4\left(\frac{1}{3\times7}+\frac{1}{7.11}+...+\frac{1}{91\times95}+\frac{1}{95\times99}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{91}-\frac{1}{95}+\frac{1}{95}-\frac{1}{99}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{99}\right)=4\times\frac{32}{99}=\frac{128}{99}\)
a) \(\frac{4}{11}-\frac{7}{15}+\frac{7}{11}-\frac{5}{15}\)
\(=\left(\frac{4}{11}+\frac{7}{11}\right)-\left(\frac{7}{15}+\frac{5}{15}\right)\)
\(=1-\frac{4}{5}\)
\(=\frac{1}{5}\)
b) \(\frac{7}{3}-\frac{4}{9}-\frac{1}{3}-\frac{5}{9}\)
\(=\left(\frac{7}{3}-\frac{1}{3}\right)-\left(\frac{4}{9}+\frac{5}{9}\right)\)
\(=2-1\)
\(=1\)
c) \(\frac{1}{4}+\frac{7}{33}-\frac{5}{3}\)
\(=\frac{-1}{4}+\frac{-16}{11}\)
\(=\frac{-75}{44}\)
d) \(\frac{-3}{4}\times\frac{8}{11}-\frac{3}{11}\times\frac{1}{2}\)
\(=\frac{-6}{11}-\frac{3}{22}\)
\(=\frac{15}{22}\)
e) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}+\frac{1}{13\times15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{4}{15}\)
A = 4/3 x 7 + 4/7 x 11 + 4/11 x 15 + .... + 4/95 x 99
A = 4/3 - 4/7 + 4/7 - 4/11 + 4/11 - 4/15 + ..... + 4/95 - 4/99
A = 4/3 - 4/99
A = 128/99
\(A=4\left(\frac{4}{3.7}+\frac{4}{7.11}+.......+\frac{4}{95.99}\right)\)
\(=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.......+\frac{1}{95}-\frac{1}{99}\right)\)
\(=4.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=4.\left(\frac{33}{99}-\frac{1}{99}\right)\)
\(=4.\frac{32}{99}=\frac{128}{99}\)