K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3. \(P=2x^2-8\)

   \(P=2x^2-2.4\)

  \(P=2\left(x^2-4\right)\)

  \(P=2\left(x^2-2^2\right)\)

  \(P=2\left(x-2\right)\left(x+2\right)\)

16 tháng 9 2016

1. Tính ( x + 2y ) . ( x - 1/3y )2

2. Bổ sung vào chỗ chấm tròn biểu thị hình phương của một hiệu :

4x2y2+ .... + 9

3. Viết biểu thức sau thành tích của những đa thức

P = 2x2 - 8

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

31 tháng 7 2018

a/\(x^2-2x\left(y+2\right)+y^2+4y+4=x^2-2x\left(y+2\right)+\left(y+2\right)^2=\left(x-y-2\right)^2\)

b/\(x^2+2x\left(y+1\right)+y^2+2y+1=x^2+2x\left(y+1\right)+\left(y+1\right)^2=\left(x+y+1\right)^2\)

31 tháng 8 2020

a. \(2a^2+5ab-3b^2-7b-2\)

\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)

\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)

\(=\left(2a-b-2\right)\left(a+3b+1\right)\)

b. \(2x^2-7xy+x+3y^2-3y\)

\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)

\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

c. \(6x^2-xy-2y^2+3x-2y\)

\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)

\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y+1\right)\)

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

14 tháng 8 2015

a/ \(=3y^2-6y-2x+1\)

b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

c/ \(=\left(2-x\right)^3\)

d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)

\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)

\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)

e/ \(=xy-x^2+2x-y^2+xy-2y\)

\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)

14 tháng 8 2015

a) =(2x+3y-1)2

b)=-(x-1)3

c)=-(x3-6x2+12x-8)=-(x-2)3

d)x3 + 2x2y + xy2 – 9x

    = x(x2 + 2xy + y2 -9)

    = x[(x2 + 2xy + y2) - 32]

    = x[(x + y)2 - 32]

    = x (x + y – 3)(x + y + 3)

e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)

10 tháng 9 2016

Bài 1:

b) \(16x^2-8x+1=\left(4x-1\right)^2\)

c) \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left[\left(x+3\right)\left(x+6\right)\right]\left[\left(x+4\right)\left(x+5\right)\right]+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

Đật \(x^2+9x+19=t\) , pt trở thành

\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+9x+19\right)^2\)

d) \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

e) \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\)

a)_ Sai đề

 

 

10 tháng 9 2016

N = (x2 - 4x - 5)(x2 - 4x - 19) + 49

Đặt x2 - 4x - 5 = t, ta có:

t(t - 14) + 49

t2 - 14t + 49

= (t - 7)2

= (x- 4x - 12)2

= (x2 - 6x + 2x - 12)2

= [x(x - 6) + 2(x - 6)]2

= [(x + 2)(x - 6)]2

[(x + 2)(x - 6)]2 lớn hơn hoặc bằng 0

Vậy Min N = 0 khi x = - 2 hoặc x = 6.

T = x2 - 6x + y2 - 2y + 12

= x2 - 2 . x . 3 + 9 + y2 - 2 . y . 1 + 1 + 2

= (x - 3)2 + (y - 1)2 + 2

(x - 3)2 lớn hơn hoặc bằng 0

(y - 1) lớn hơn hoặc bằng 0

(x - 3)2 + (y - 1)2 + 2 lớn hơn hoặc bằng 2

Vậy Min T = 2 khi x = 3 và y = 1.

Chúc bạn học tốt ^^