K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

sorry mình mới học lớp 5

Đ / S : mình mới học lớp 5

Ai tích mình mình tích lại

24 tháng 10 2016

a)\(S=2^1+2^2+...+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2^1\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2^1\cdot15+...+2^{97}\cdot15\)

\(=15\cdot\left(2^1+...+2^{97}\right)⋮15\)

24 tháng 10 2016

c)\(S=2^1+2^2+...+2^{100}\)

\(2S=2\left(2^1+2^2+...+2^{100}\right)\)

\(2S=2^2+2^3+...+2^{101}\)

\(2S-S=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(S=2^{101}-2\)

21 tháng 12 2019

1/a/  Vì 32020= (34)504.34= A1 . 81

=> Chữ số tận cùng là 81.

b/ 42020=(44)504.44A1 . 256

=> Chữ số tận cùng là 56.

c/ Vì 32020= (34)504.34= A1 . 81

=> Chữ số tận cùng là 81.   (1)

Vì 52020=(54)504.54= A1 . 625

=> Chữ số tận cùng là 25 (2)

Từ (1) và (2) , suy ra:

Tổng 2 chữ số tận cùng của 32020 và 52020 là:

81 + 25 =106

=> Chữ số tận cùng là 06.

2/a/ Vì 3100=(34)23.35= A1 . 243

=> Chữ số tận cùng là 243.

b/  Vì 7200= (74)49. 74 = A1 . 2401

=> Chữ số tận cùng là 401.

21 tháng 10 2020

S = 1 + 2 + 22 + 23 + ... + 2100 

2S = 2 . ( 1 + 2 + 22 + 23 + ... + 2100)

2S = 2 + 22 + 23 + 24 + ... + 2101 

2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )

1S = 2101 - 1

S = 2101 - 1

Vậy S = 2101 - 1

Học tốt!!!

3 tháng 9 2017

2. ta có:
220 ≡76220≡ dư 76(chia cho 100)

=>(220)5≡765≡76(220)5≡765≡ dư76 ( chia cho 100)

=> 2100≡762100≡ dư76(chia cho 100)

=>2100  có hai chữ tận cùng là 76

1 tháng 9 2017

các bạn giúp với ai nhanh mk sẽ k cho mà

Bài 1 : Ta có : \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)\)

\(=\overline{......0}\)

\(\Rightarrow\)Chữ số tận cùng của \(A\)là \(0\)

Bài 3:

a)Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=31+2^4.31+...+2^{96}.31\)

\(=31\left(1+2^4+...+2^{96}\right)⋮31\)

\(\Rightarrow\)\(đpcm\)

b) Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(\Rightarrow2C=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow2C-C=\left(2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(2+2^2+2^3+...+2^{99}+2^{100}\right)\)

\(\Rightarrow C=2^{101}-2\)

Mà \(2^{2x}-2=C\)

\(\Rightarrow2^{2x}-2=2^{101}-2\)

\(\Rightarrow2^{2x}=2^{101}\)

\(\Rightarrow2x=101\)

\(\Rightarrow x=\frac{101}{2}\)

Vậy \(x=\frac{101}{2}\)

Bài 2:

Ta có : \(\overline{abcd}=1000a+100b+10c+d\)

\(=1000a+96b+8c+\left(d+2c+4b\right)\)

\(=8\left(125a+12b+c\right)+\left(d+2c+4b\right)\)

Vì \(\hept{\begin{cases}d+2c+4b⋮8\\8\left(125a+12b+c\right)⋮8\end{cases}}\)

\(\Rightarrow\overline{abcd}⋮8\)

\(\Rightarrowđpcm\)

6 tháng 10 2020

a) Ta có: \(S=1+4+4^2+...+4^{100}\)

\(\Rightarrow4S=4+4^2+4^3+...+4^{101}\)

\(\Leftrightarrow4S-S=\left(4+4^2+...+4^{101}\right)-\left(1+4+4^2+...+4^{100}\right)\)

\(\Leftrightarrow3S=4^{101}-1\)

\(\Rightarrow S=\frac{4^{101}-1}{3}\)

b) Tương tự phần a ta tính được: \(A=\frac{5^{97}-5}{4}\)

Ta có: \(5^{97}-5=\overline{...5}-5=\overline{...0}\)

Đến đây thì A sẽ có cstc là 0 hoặc 4

6 tháng 10 2020

a) S = 1 + 4 + 42 + 43 + ... + 4100

=> 4S = 4( 1 + 4 + 42 + 43 + ... + 4100 )

           = 4 + 42 + 43 + ... + 4101

=> 4S - S = 3S

= 4 + 42 + 43 + ... + 4101 - ( 1 + 4 + 42 + 43 + ... + 4100 )

= 4 + 42 + 43 + ... + 4101 - 1 - 4 - 42 - 43 - ... - 4100 

= 4101 - 1

=> S = (4101 - 1 )/3

b) A = 5 + 52 + 53 + ... + 596

= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 595 + 596 )

= 30 + 52( 5 + 52 ) + ... + 594( 5 + 52 )

= 30 + 52.30 + ... + 594.30

= 30( 1 +  52 + ... + 594 ) chia hết cho 10 ( vì 30 chia hết cho 10 )

=> A có tận cùng là 0

Trả lời :

Câu 1 :

Tổng phải tìm là : 0 + 2 + 4 + ... + 198 = 2(1 + 2 +...+99)= 2 . \(\frac{99\left(99+1\right)}{2}\)= 99 . 100 = 9900.

Câu 2 : Vì 3334 có tận cùng là 1 nên : 

333333 = 333 . ( 333 )332 = 333 . (3334)83

Vậy chữ số tận cùng của 333333 là 3.