Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{12}{3.5}+\frac{12}{5.7}+...+\frac{12}{2013.2015}\)
\(2A=\frac{24}{3.5}+\frac{24}{5.7}+...+\frac{24}{2013.2015}\)
\(2A=\frac{24}{3}-\frac{24}{5}+\frac{24}{5}-\frac{24}{7}+...+\frac{24}{2013}-\frac{24}{2015}\)
\(2A=8-\frac{24}{2015}\)
\(2A=\frac{8}{1}-\frac{24}{2015}\)
\(2A=\frac{16120}{2015}-\frac{24}{2015}\)
\(2A=\frac{16096}{2015}\)
\(=>A=\frac{16096}{2015}:2\)
\(=>A=\frac{16096}{4030}\)
Mk giải ko chép lại đề nhá!
Bài 3:
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}\)\(-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{50}{50}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Vậy: M < 1
Bài 2:
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\frac{1}{1}-\frac{1}{2015}\)
\(=\frac{2015}{2015}-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
B = \(\frac{2^3.5.7.5^2.7^3}{\left(2.5.7^2\right)^2}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2.5.1}{1.1.1}=10\)
C = \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}\left(\frac{33}{99}-\frac{1}{99}\right)=\frac{1}{2}.\frac{32}{99}=\frac{16}{99}\)
A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
a)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\left(\frac{x-1}{11}+3\right)+\left(\frac{x-1}{12}+2\right)=\left(\frac{x-1}{13}+3\right)+\left(\frac{x-1}{14}+2\right)\)
\(\left(\frac{x-1}{11}+\frac{x-1}{12}\right)+\left(3+2\right)=\left(\frac{x-1}{13}+\frac{x-1}{14}\right)+\left(3+2\right)\)
\(\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}+\frac{x-1}{14}=0\)
\(\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)\(\Rightarrow\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\ne0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
a/
S = 1-2+3-4+5-6+...+2001-2002+2003
= [-1] +[-1] +...+[-1] +2003
------------------------
1001 số -1
= -1001 +2003 = 1002
b/
A = \(6.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)=6.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)=6.\left(\frac{1}{3}-\frac{1}{2015}\right)=\frac{6.2012}{6045}=\frac{4024}{2015}\)