Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.........+\frac{1}{110}+\frac{1}{132}\)
=1/1*2+1/2*3+1/3*4+...+1*10*11+1/11*12=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11+1/11-1/12
=1-1/12=11/12.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}+\frac{1}{11\times12}\)
\(=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{11}+\frac{1}{12}\)
\(=1-\frac{1}{12}\)
\(=\frac{11}{12}\)
Bài giải
a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)
\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)
b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)
\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)
c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)
d, \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1\)
\(=3\)
e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)
\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)
\(=1+1+1\)
\(=3\)
a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)
\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)
b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)
\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)
c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)
d, \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1\)
\(=3\)
e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)
\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)
\(=1+1+1\)
\(=3\)
Bài 1 :
a) Hai phân số có chung tử số thì ta so sánh mẫu nếu mẫu lớn hơn thì phân số đó bé hơn
Áp dụng vào đó ta có : 71 < 72 => 15/71 > 15/72
b) Ta có : 21/42 = 1/2 = 23/46
Áp dụng câu a ta có : 46 > 45 => 21/42 < 23/45
c) Ta có : 47/45 = 1 + 2/45 ; 48/46 = 1 + 2/46
Vì 2/45 > 2/46 => 47/45 > 48/46
d) Ta có : 1 - 13/25 = 12/25
1/3 = 12/36
Vì 12/25 > 12/36 => 13/25 > 3/7
Bài 2 :
D = 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/110
D = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + .... + 1/10.11
D = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + .... + 1/10 - 1/11
D = 1 - 1/11
D = 10/11
\(=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{11.12}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}\)
\(=\frac{5}{12}\)
bn sẽ tinh theo kieeuranhaan 2 nha xin lỗi mik làm bi này rùi nhưng mik quên mik có sacks xem lại
1/2+1/6+1/12+....+1/110
= 1/1.2+1/2.3+1/3.4+......+1/10.11
=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
=1-1/11=10/11
=0:{2+4+6+...98}=0
=[1+3+5+7+...97+99]x[45x3-45x3]
=[----------------------------]x0=0
Dấu gạch trên là gì đấy?
a, [ 0 x 1 x 2 x 3 ...x 99 x 100] : [2 + 4 + 6 + ... 98]
Vì có chữ số 0 mà 0 nhân số nào cũng bằng 0
=> 0 : ( 2 + 4 + 6 + ... 98 )
Vì số nào chia 0 cũng bằng 0
=> 0 : ( 2 + 4 + 6 +.. + 98 ) = 0
b, Đặt A = 1 + 3 + 5 + 7 + ... + 97 + 99 )
Đặt B = 45x 3 - 45 x 2 - 45
B = 45 x 3 - 45 x 2 - 45
B = 45 x 3 - 45 x 2 - 45 x 1
B = 45 x ( 3 - 2 - 1 )
B = 45 x 0
B = 0
Vì 0 nhân số nào cũng = 0
=> ( 1 + 3 + 5 + 7 + ... + 97 +99 ) x 0 = 0
c, Bạn chỉ cần biến đổi tử số hoặc mẫu số giống nhau thì kết quả sẽ = 1 nha
a) \(\frac{3}{16}+\frac{4}{15}+\frac{5}{16}+\frac{1}{15}\)
\(=\left(\frac{3}{16}+\frac{5}{16}\right)+\left(\frac{4}{15}+\frac{1}{15}\right)\)
\(=\frac{1}{2}+\frac{1}{3}\)
\(=\frac{5}{6}\)
b) \(\frac{6}{7}\times\frac{8}{15}\times\frac{7}{6}\times\frac{15}{16}\)
\(=\left(\frac{6}{7}\times\frac{7}{6}\right)\times\left(\frac{8}{15}\times\frac{15}{16}\right)\)
\(=1\times\frac{1}{2}=\frac{1}{2}\)
c) \(\frac{19}{20}\times\frac{13}{21}+\frac{9}{20}\times\frac{8}{21}\)
\(=\frac{19\times13}{20\times21}+\frac{9\times8}{20\times21}\)
\(=\frac{247}{420}+\frac{72}{420}\)
\(=\frac{319}{420}\)
\(=(1+\frac{1}{2})+(1+\frac{1}{6}) + ..+ (1+\frac{1}{132})\)
\(=(1+..+1) + (\frac{1}{2}+\frac{1}{6} + ..+ \frac{1}{132}) \)
\(=66+ (\frac{1}{1.3}+\frac{1}{2.3}+...+ \frac{1}{11.12})\)
\(=66+ (1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-....+\frac{1}{11}-\frac{1}{12})\)
\(=66+(\frac{1}{2}-\frac{1}{12})= 66+\frac{5}{12}=\frac{797}{12}\)
3/2 + 7/6 + 13/12 + 21/20 +...+ 111/110 + 133/132
=(1+1/2)+(1+1/6)+(1+1/12)+(1+1/20)+...+(1+1/110)+(1+1/132)
=(1+1+...+1)+(1/2+1/6+1/12+...+1/110+1/132)
=(có 11 số 1) 1*11+(1/1*2+1/2*3+1/3*4+1/4*5+...+1/10*11+1/11*12) => 1/1*2=2-1/1*2=2/1*2-1/1*2 1/2*3=3-2/2*3=3/2*3-2/2*3.....
=11+(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11+1/11-1/12)
=11+(1-1/12)
=11+11/12
=143/12
*:là dấu nhân