\(A=\dfrac{0.5+\dfrac{7}{12}-\dfrac{5}{6}}{1-\dfrac{2}{3}+0,75}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.

15 tháng 10 2018

\(\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-0,75:1\dfrac{1}{2}-1,25^2\)

\(=\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-\dfrac{3}{4}:\dfrac{3}{2}-\dfrac{25}{16}\) \(=\left(\dfrac{31}{30}-\dfrac{9}{10}\right).\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2}{15}.\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(-\dfrac{1}{50}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{8}{25}\)

15 tháng 10 2018

đề bài là gì

6 tháng 12 2017

B = .................

Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0

\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)

6 tháng 12 2017

Mình làm câu 1,2 trước, câu 3 sau

Câu 1:

\(\sqrt{x^2}=0\)

=> \(\left(\sqrt{x^2}\right)^2=0^2\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Câu 2:

\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)

\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)

21 tháng 7 2018

*Trả lời :

a) \(-\dfrac{3}{4}.5\dfrac{3}{13}-0,75.\dfrac{36}{13}\)

= \(-\dfrac{3}{4}.\dfrac{68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)

=\(\dfrac{3}{4}.\dfrac{-68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)

=\(\dfrac{3}{4}.\cdot\left(\dfrac{-68}{13}-\dfrac{36}{13}\right)\)

=\(\dfrac{3}{4}.\left(-8\right)\)

= \(-6\)

b)\(4\dfrac{5}{9}:\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)

=\(\dfrac{41}{9}-\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)

=\(\left(\dfrac{41}{9}+\dfrac{49}{9}\right):\left(-\dfrac{5}{7}\right)\)

=\(\dfrac{90}{9}:\left(-\dfrac{5}{7}\right)\)

=\(10:\left(-\dfrac{5}{7}\right)\)

=\(-14\)

c)\(\left(-\dfrac{3}{5}+\dfrac{4}{9}\right):\dfrac{7}{11}+\left(-\dfrac{2}{5}+\dfrac{5}{9}\right):\dfrac{7}{11}\)

=\(\left(-\dfrac{3}{5}\right)+\dfrac{4}{9}:\dfrac{7}{11}+\left(-\dfrac{2}{5}\right)+\dfrac{5}{9}:\dfrac{7}{11}\)(áp dụng tính chất phá ngoặc )

=\(\left\{\left[-\dfrac{3}{5}+\left(-\dfrac{2}{5}\right)\right]+\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\right\}:\dfrac{7}{11}\)

=\(\left(-\dfrac{5}{5}+\dfrac{9}{9}\right):\dfrac{7}{11}\)

=\(\left(-1+1\right):\dfrac{7}{11}\)

\(=0:\dfrac{7}{11}\)

=0.

d)\(\dfrac{6}{7}:\left(\dfrac{3}{26}-\dfrac{3}{13}\right)+\dfrac{6}{7}:\left(\dfrac{1}{10}-\dfrac{8}{5}\right)\)

=\(\dfrac{6}{7}:\left[\dfrac{3}{26}+\left(-\dfrac{6}{26}\right)\right]+\dfrac{6}{7}:\left[\dfrac{1}{10}+\left(-\dfrac{16}{10}\right)\right]\)

=\(\dfrac{6}{7}:\left(-\dfrac{3}{26}\right)+\dfrac{6}{7}:\left(-\dfrac{3}{2}\right)\)

=\(\dfrac{6}{7}:\left[\left(-\dfrac{3}{26}\right)+\left(-\dfrac{39}{26}\right)\right]\)

=\(\dfrac{6}{7}:\left(-\dfrac{21}{13}\right)\)

=\(-\dfrac{26}{49}\)

8 tháng 10 2017

a) = 1-1/2+1/2-1/3+...+1/99-1/100 =1 - 1/100 = 99/100

19 tháng 11 2018

5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)

=\(4+6-3+5\)

=\(12\)

19 tháng 11 2018

2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)

=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)

=\(\dfrac{11}{25}.\left(-100\right)\)

=\(-44\)

11 tháng 6 2017

1, \(x\left(x+\dfrac{2}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)

2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)

Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)

\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)

Vậy, ...

b, \(\left|x-\dfrac{1}{3}\right|\ge0\)

Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)

\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)

Vậy, ...

11 tháng 6 2017

1)

a)

\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)

2)

a)

\(\left|x+\dfrac{4}{6}\right|\ge0\)

Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)

Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)

b)

\(\left|x-\dfrac{1}{3}\right|\ge0\)

Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)

tính a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\) b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\) c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\) d)...
Đọc tiếp

tính

a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)

b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)

c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)

e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)

f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)

h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)

3
7 tháng 10 2017

c)

Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)

7 tháng 10 2017

d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\dfrac{1}{4}:2\)

\(=3-1+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)