Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.(5.3^11+4.3^12):(3^9.5^2-3^9.2^3)
=(5.3^11+4.3^12):(3^9.5^2-3^9.2^3)
=(5.3^11+4.3^11.3):[3^9.(5^2-2^3)]
=(5.3^11+12.3^11):[3^9.17]
=3^11.(5+12):(3^9.17)
=(3^11.17):(3^9.17)
=17.(3^11:3^9)
=17.3^2
=17.9
=153
2.(12+22+32+...+992+1002).(36.333-108.111)
=2.(12+22+32+...+992+1002).(36.333-36.3.111)
=2.(12+22+32+...+992+1002).(36.333-36.333)
=2.(12+22+32+...+992+1002).0
=0
Gạo đem vào giã bao đau đớn
Gạo giã rồi trắng tựa bông.
a) A=1-2+3-4+.....+99-100
A = ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 99 - 100 ) ( có 50 cặp )
A = ( -1 ) + ( -1 ) + ... + ( -1 )
A = ( -1 ) . 50
A = -50
b) 123.(-25) + 25.123
= 123. ( -25 + 25 )
= 123 . 0
= 0
c) C= 2100-299-298-.........-22-2-1
C = 2100 - ( 299 + 298 + ... + 22 + 2 + 1 )
Đặt D = 299 + 298 + ... + 22 + 2 + 1
2D = 2100 + 299 + ... + 23 + 22 + 2
2D - D = ( 2100 + 299 + ... + 23 + 22 + 2 ) - ( 299 + 298 + ... + 22 + 2 + 1 )
D = 2100 - 1
suy ra : C = 2100 - ( 2100 - 1 ) = 1
áp dụng quy tắc đổi dấu
b) 35-19+2019-35-2019=-19+[(35-35)-(2019-2019)]
=-19+0+=-19
a) \(124+\left(-56\right).124+\left(-124\right)\left(-47\right)=124.1-56.124+124.47\)
\(=124.\left(1-56+47\right)=124.\left(-8\right)=-992\)
b) \(35-19+2019-35+\left(-2019\right)=35-19+2019-35-2019\)
\(=\left(35-35\right)+\left(2019-2019\right)-19=0+0-19=0-19=-19\)
c) \(345-150\div\left[\left(3^3-24\right)^2-\left(-21\right)\right]+2020^0\)
\(=345-150\div\left[\left(27-24\right)^2+21\right]+1=345-150\div\left(3^2+21\right)+1\)
\(=345-150\div24+1=345-6,25+1=339,75\)
a) \(\frac{2^{47}\cdot5^{14}\cdot18^{13}\cdot45^{17}}{180^{30}}\)
=\(\frac{2^{47}\cdot5^{14}\cdot2^{13}\cdot3^{26}\cdot3^{34}\cdot5^{17}}{2^{60}\cdot3^{60}\cdot5^{30}}\)
=\(\frac{2^{60}\cdot3^{60}\cdot5^{31}}{2^{60}\cdot3^{60}\cdot5^{30}}\)
=\(\frac{5^{31}}{5^{30}}=5\)
a) 125 + 70 + 375 + 230 = (125 + 375) + (70 + 230) = 500 + 300 = 800
b) 62 : 4 . 3 + 2 . 52 = 62 : 22 . 3 + 2 . 25 = 32 . 3 + 50 = 33 + 50 = 27 + 50 = 77
c) 150 : [25 . (18 - 42)] = 150 : (25 . 2) = 150 : 50 = 3
a, \(A=1+2+2^2+....+2^{56}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{56}\right)\)
\(\Rightarrow2A=2+2^2+2^3+....+2^{56}+2^{57}\)
\(\Rightarrow2A-A=2^{57}-1\)
\(\Rightarrow A=2^{57}-1\)
Câu b làm tương tự nha bạn
c, \(C=1-3+3^2-3^3+....+3^{98}-3^{99}\)
\(\Rightarrow3C=3-3^2+3^3-...-3^{98}+3^{99}-3^{100}\)
\(\Rightarrow3C+C=1-3^{100}\)
\(\Rightarrow C=\frac{1-3^{100}}{4}\)
a)\(A=1+2+2^2+...+2^{56}\)
\(2A=2+2^2+2^3+2^4+...+2^{57}\)
\(2A-A=2+2^2+2^3+2^4+...+2^{57}-1-2-2^2-2^3-...-2^{56}\)
\(A=2^{57}-1\)
b)\(B=1+3^1+3^2+...+3^{100}\)
\(3B=3+3^2+3^3+...+3^{101}\)
\(3B-B=3+3^2+3^3+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2B=3^{101}-1\)
\(B=\frac{3^{101}-1}{2}\)
c)\(C=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(3C=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(3C+C=1-3^{100}\)
\(\Rightarrow4C=1-3^{100}\)
\(\Rightarrow C=\frac{1-3^{100}}{4}\)
\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)
\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow24B=5^{101}-5\)
\(\Rightarrow B=\frac{5^{101}-5}{24}\)
A, 48.31+51.31+31+119
=31.(48+51+1)+119
=31.100+119
=3100+119
3219
B,4.9-56:8-1
=36-7-1
=28
a,48.31+51.31+150
=31.(48+51)+150
=31.99+150
=3069+150
=3219
b,4.3^2-56:2^3-1^100
=4.9-56:8-1
=36-7-1
=26