Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
\(=2x^2y^3z^2-2y^4\)
Bậc của đa thức A là 7
Vậy...
b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)
\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)
\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)
Vậy...
Đặt \(\frac{x}{2}=\frac{2y}{5}=\frac{3z}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=\frac{5}{2}k\\z=\frac{7k}{3}\end{cases}}\)
Thay vô rồi tính tiếp nhé!
a. \(=-4x^5y^3+4x^5y^3-3x^4y^3+x^4y^3-6xy^2\)
\(=0-2x^4y^3-6xy^2\)
\(=-2x^4y^3-6xy^2\)
Bậc của đa thức là 5
a,,\(A=30x^2yz-4xy^2z-2008xyz^2\)
=> bậc của A là bậc 4
b,\(15x-2y=1004z\Rightarrow15x-2y-1004z=0\)
\(A=2xyz\left(15x-2y-1004z\right)=0\)
Ta có: 6x = 4y => x/4 = y/6
4y = 3z => y/3 = z/4 => y/6 = z/8
=> x/4 = y/6 = z/8
Đặt \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}=k\) => x = 4k; y = 6k; z = 8k
Khi đó, ta có:
M = \(\frac{2.\left(4k\right)^2+5.\left(6k\right)^2-4.\left(8k\right)^2}{7.\left(4k\right)^2-4.\left(6k\right)^2+3.\left(8k\right)^2}\)
= \(\frac{2.4^2.k^2+5.6^2.k^2-4.8^2.k^2}{7.4^2.k^2-4.6^2.k^2+3.8^2.k^2}\)
= \(\frac{k^2.\left(2.16+5.36-4.64\right)}{k^2.\left(7.16-4.36+3.64\right)}\)
= \(\frac{32+180-256}{112-144+194}\)
= \(\frac{-44}{162}=-\frac{22}{81}\)
Đặt \(6x=4y=3z=k\Rightarrow\hept{\begin{cases}x=\frac{k}{6}\\y=\frac{k}{4}\\z=\frac{k}{3}\end{cases}}\) (nhớ đk: x,y,z khác 0 tức là k khác 0)
Thay vào M rồi tự tính.