Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: \(\left|x\right|=7\Rightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{\pm7\right\}\)
2. \(M=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\)
\(\Rightarrow M=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
\(\Rightarrow M=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
\(\Rightarrow M=\dfrac{1}{2}.\left(\dfrac{13}{39}-\dfrac{3}{39}\right)\)
\(\Rightarrow M=\dfrac{1}{2}.\dfrac{10}{39}=\dfrac{1.10}{2.39}=\dfrac{5}{39}\)
Tick mk vs! Thank nhiều!
1. Theo đb ta có: |x|=7
=> Có 2 TH:\(\left\{{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\) \(\in Z\)
Vậy x=7 \(\veebar\) x= -7 ( x\(\in\) Z) thì |x|=7
2. \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
Đặt A= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
Ta thấy: \(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{3.5}\)
\(\dfrac{1}{5}-\dfrac{1}{7}=\dfrac{2}{5.7}\)
... \(\dfrac{1}{11}-\dfrac{1}{13}=\dfrac{2}{11.13}\)
=> 2D=2(\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\))
<=> 2D= \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
<=>2D=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
<=> 2D= \(\dfrac{1}{3}-\dfrac{1}{13}\)
<=>2D= \(\dfrac{13}{39}-\dfrac{3}{39}\)
<=>2D=\(\dfrac{10}{39}\)
=> D= \(\dfrac{10}{39}:2\)
<=> D= \(\dfrac{10}{39}.\dfrac{1}{2}\)
<=> D=\(\dfrac{5}{39}\)
Vậy D= \(\dfrac{5}{39}\)
_ Chc bn hk tốt_
\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)
\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)
\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)
\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)
\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)
\(B=\dfrac{4.9.16.100}{3.8.15.99}\)
\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)
\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)
\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)
a)
\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=\dfrac{1}{5}-\dfrac{1}{25}\)
\(=\dfrac{4}{25}\)
b)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)
⇒ \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)
tương tự
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)
A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)
b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)
Bài 1:
a)=2.( \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{97}-\dfrac{1}{99}\)
=2. (1/3-1/99)
=2. (33/99-1/99)
=2. 32/99
=64/99
b) tương tự như trên.
Bài 1 :
a) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(=2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\right)\)
\(=2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=2\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(=2\left(\dfrac{33}{99}-\dfrac{1}{99}\right)\)
\(=2.\dfrac{32}{99}\)
\(=\dfrac{2.32}{99}\)
\(=\dfrac{64}{99}\)
b) \(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\)
\(=2\left(\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{49.51}\right)\)
\(=3\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)
\(=3\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=3\left(1-\dfrac{1}{51}\right)\)
\(=3.\dfrac{50}{51}\)
\(=\dfrac{3.50}{51}\)
\(=\dfrac{1.50}{17}\)
\(=\dfrac{50}{17}\)
b,\(\dfrac{1}{3.5}+\dfrac{1}{5.7}\)\(+\dfrac{1}{7.9}+....+\dfrac{1}{\left(2x+1\right).\left(2x+3\right)}=\dfrac{15}{93}\)
\(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)
\(\left[\dfrac{1}{3}+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+....+\left(\dfrac{1}{2x+1}-\dfrac{1}{2x+1}\right)-\dfrac{1}{2x+3}\right].\dfrac{1}{2}=\dfrac{15}{93}\)
\(\left(\dfrac{1}{3}+0+0+...+0-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)
\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{15}{93}:\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)
\(\dfrac{1}{2x+3}=\dfrac{1}{3}-\dfrac{10}{31}\)
\(\dfrac{1}{2x+3}=\dfrac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=93-3=90\)
\(\Rightarrow x=90:2=45\)
B)
B = \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{29.31}\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...\dfrac{1}{29.31}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{31}\right)\)
= \(\dfrac{1}{2}.\dfrac{30}{31}\)
= \(\dfrac{30}{62}\) = \(\dfrac{15}{31}\)
bn ơi viết đpá án hơi khó nhìn xíu nha