\(2^0+2^1+2^2+.........+2^{2006}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha

Bài 1 : 

Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)

Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

nên \(\left(2a-2\right).2a.\left(2a+2\right)\)

Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)

Bài 2 

a) \(\left(5^n-1\right)⋮4\)

Nếu \(n=1\)thì \(5^n-1=4⋮4\)

Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho  \(4\)

Vậy \(\left(5^n-1\right)⋮4\)

b) \(\left(10^n+18n-1\right)⋮27\)

Ta có :\(10^n-1=99.....9\)(n chữ số 9)

\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )

Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)

\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)

Chúc bạn học tốt ( -_- )

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

30 tháng 6 2017

Bài 1 :

a) A = \(8^2\) . \(32^4\) = \(\)(2\(^3\))\(^2\) . ( \(2^5\))\(^4\) = 2\(^6\) . 2\(^{20}\) = 2\(^{26}\)

b) B = 27\(^3\) . 9\(^4\) . 243 = ( \(3^3\))\(^3\) . ( \(3^2\) )\(^4\) . 3\(^5\) = 3\(^9\) . \(3^8\) . 3\(^5\) = 3\(^{22}\)

30 tháng 6 2017

Bài 2 : So sánh

a) A = 27\(^5\) và B =2433

Ta có : 27\(^5\) =(3\(^3\))\(^5\) = 3\(^8\) = 6561

Vì 6561 > 2433 nên A > B .

b) A = 2300 và B = 3\(^{200}\)

Ta có : B = \(3^{200}\) = 3\(^8\) . 3\(^{192}\) = 6561 . 3\(^{192}\)

Vậy chắc chắn rằng B > A .

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM