Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi A=1/1x6+1/6x11+1/11x16+...+1/96x101
A=1/1x6+1/6x11+1/11x16+...+1/96x101
5A=5/1x6+5/6x11+5/11x16+...+5/96x101
5A=1-1/6+1/6-1/11+1/11-1/16+...+1/96-1/101
5A=1-1/101
5A=100/101
A=100/101:5
A=20/101.
Nếu đúng thì kết bạn với mình nhé.Mình học lớp 6C của trường THCS An Khê.Tên Đỗ Đường Hùng.
= 1/5 . (5/1.6 + 5/6.11 + ...... + 5/96.101)
= 1/5 . (1-1/6+1/6-1/11+.....+1/96-1/101)
= 1/5.(1-1/101)
= 1/5 . 100/101
= 20/101
Tk mk nha

\(A=\frac{15}{1.6}+\frac{15}{6.11}+\frac{15}{11.16}+...+\frac{15}{2011.2016}\)
\(\Rightarrow\)\(\frac{1}{3}A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+..+\frac{5}{2011.2016}\)
\(\Rightarrow\)\(\frac{1}{3}A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{2011}-\frac{1}{2016}\)
\(\Rightarrow\)\(\frac{1}{3}A=1-\frac{1}{2016}\)
\(\Rightarrow\)\(\frac{1}{3}A=\frac{2015}{2016}\)
\(\Rightarrow\)\(A=\frac{2015}{672}\) (1)
Mà \(3=\frac{2016}{672}\) (2)
Từ (1) và (2) suy ra A < 3

giúp mik vs, mik bik các pạn giờ này đang ngủ rùi nhưng giúp mik lần này thui.yêu các pạn nhìu
\(5\frac{1}{2}+\left(-3\right)=\frac{11}{2}+\frac{-3}{1}\)\(=\frac{11}{2}+\frac{-6}{2}=\frac{5}{2}\)\(;\)
\(4\frac{9}{11}+\left(-2\frac{1}{11}\right)=\frac{53}{11}+\frac{-23}{11}\)\(=\frac{30}{11}\)\(;\)
\(2\frac{1}{2}+\left(-6\right)=\frac{5}{2}+\frac{-6}{1}\)\(=\frac{5}{2}+\frac{-12}{2}=\frac{-7}{2}\)\(;\)
\(\left(-\frac{4}{5}\right)+\frac{1}{2}=\frac{-4}{5}+\frac{1}{2}\)\(=\frac{-8}{10}+\frac{5}{10}=\frac{-3}{10}\)\(;\)
\(4,3-\left(-1,2\right)=4,3+1,2=5,5\)\(=\frac{55}{10}=\frac{11}{2}\)\(;\)
\(0-\left(-0,4\right)=0+0,4=0,4\)\(=\frac{4}{10}=\frac{2}{5}\)\(;\)
\(\frac{-2}{3}-\frac{-1}{3}=\frac{-2}{3}+\frac{1}{3}=\frac{-1}{3}\)\(;\)
\(\frac{-1}{2}-\frac{-1}{6}=\frac{-1}{2}+\frac{1}{6}\)\(=\frac{-3}{6}+\frac{1}{6}=\frac{-2}{6}=\frac{-1}{3}\)\(;\)
\(x+\frac{1}{3}=\frac{3}{4}\) \(;\) \(x-\frac{2}{5}=\frac{5}{7}\) \(;\)
\(x=\frac{3}{4}-\frac{1}{3}\) \(x=\frac{5}{7}+\frac{2}{5}\)
\(x=\frac{5}{12}\) \(x=\frac{39}{35}\)
\(-x-\frac{2}{3}=-\frac{6}{7}\) \(;\) \(\frac{4}{7}-x=\frac{1}{3}\)
\(\frac{6}{7}-\frac{2}{3}=x\) \(\frac{4}{7}-\frac{1}{3}=x\)
\(\frac{4}{21}=x\) \(\Leftrightarrow\)\(x=\frac{4}{21}\) \(\frac{5}{21}=x\)\(\Leftrightarrow\)\(x=\frac{5}{12}\)

a) \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{19}-\frac{1}{19}+\frac{1}{23}-\frac{1}{23}+\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
b) \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+\frac{1}{20}-...-\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\frac{19}{100}\)
\(=1-\frac{19}{500}\)
\(=\frac{481}{500}\)

B. 1/3 - 1/3 - 3/5 +3/5 + 5/7 - 5/7 + 9/11 - 9/11 -11/13 + 11/ 13 + 7/9 + 13/15
= 0 -0-0-0-0+7/9 +13/15
= 74/45

\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
Làm tắt nha :
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)
\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)
Tự tính nốt nha

Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)
d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
=> \(x:\frac{1}{45}=\frac{1}{2}\)
=> \(x=\frac{1}{2}.\frac{1}{45}\)
=> \(x=\frac{1}{90}\)
Vậy \(x=\frac{1}{90}.\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)
Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.
Chúc bạn học tốt!

a/ \(\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{32}{17}+\frac{14}{21}=\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{14}{21}\right)-\frac{32}{17}=1+1-\frac{32}{17}=\frac{2}{17}\)
\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{491.496}+\frac{1}{496.501}\)
\(=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{491.496}+\frac{5}{496.501}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{491}-\frac{1}{496}+\frac{1}{496}-\frac{1}{501}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{501}\right)=\frac{1}{5}.\frac{500}{501}=\frac{100}{501}\)