\(\frac{1}{2}\)+<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Ta có : \(A=3+3^2+3^3+.....+3^{2016}\)

\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2017}\)

\(\Rightarrow3A-A=3^{2017}-3\)

\(\Rightarrow2A=3^{2017}-3\)

\(\Rightarrow A=\frac{3^{2017}-3}{2}\)

\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{1024}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{512}\)

\(\Rightarrow2B-B=1-\frac{1}{1024}\)

\(\Rightarrow B=\frac{1023}{1024}\)

30 tháng 3 2018

Bài 1 : dễ bạn tự làm được :) 

Bài 2 : 

Ta có : 

\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Vì : 

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Leftrightarrow\)\(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

30 tháng 3 2018

Ta có :  B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì :  2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên  2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~ 

10 tháng 4 2018

câu 1 :

 \(A=\frac{-7}{12}:\frac{49}{11}\cdot\frac{5}{121}-\frac{7}{6}\)                                                \(B=\frac{1}{8}-\frac{8}{7}:8-3:\frac{3}{4}\cdot-2^3\)

          \(A=\frac{-11}{84}\cdot\frac{5}{121}-\frac{7}{6}\)                                                        \(B=\frac{1}{8}-\frac{8}{7}:\frac{8}{1}-\frac{3}{1}:\frac{3}{4}\cdot\left(-2^3\right)\)            

           \(A=\frac{-5}{924}-\frac{7}{6}\)                                                                     \(B=\frac{1}{8}-\frac{1}{7}-\left(-32\right)\)

           \(A=\frac{-361}{308}\)                                                                            \(B=\frac{-1}{56}-\left(-32\right)\)

                                                                                                                 \(B=\frac{1791}{56}\)

Câu 2 :

a)\(\frac{22}{7}:x=\frac{11}{7}\)                                                     b)\(\left(1-3x\right)\cdot\frac{4}{3}=-2^3\)

          \(x=\frac{22}{7}:\frac{11}{7}\)                                                 \(\left(1-3x\right)\cdot\frac{4}{3}=-8\)                                                    

          \(x=2\)                                                                      \(\left(1-3x\right)=-8:\frac{4}{3}\)   

                                                                                              \(\left(1-3x\right)=-6\)

                                                                                       \(3x=-6-1=7\)

                                                                                        \(3x=7:3=\frac{7}{3}\)

c ) bằng \(\frac{27}{5}\)nhé

18 tháng 9 2016

Ta có: B = 22010  -   22009  -  22008  -......- 2 -1

=> B = 22010 - (1 + 2 + 22 + ..... + 22009)

Đặt A = 1 + 2 + 22 + .... + 22009

=> 2A = 2 + 22 + .... + 22010

=> 2A - A = 22010 - 1

=> A = 22010 - 1

Vậy B = 22010 - (22010 - 1)

=> B = 22010 - 22010  + 1

=> B = 1

18 tháng 9 2016

Ta có: B = 22010  -   22009  -  22008  -......- 2 -1

=> B = 22010 - (1 + 2 + 22 + ..... + 22009)

Đặt A = 1 + 2 + 22 + .... + 22009

=> 2A = 2 + 22 + .... + 22010

=> 2A - A = 22010 - 1

=> A = 22010 - 1

Vậy B = 22010 - (22010 - 1)

=> B = 22010 - 22010  + 1

=> B = 1

NV
24 tháng 6 2019

\(A=3+3^2+...+3^{50}\)

\(\Rightarrow3A=3^2+3^3+...+3^{50}+3^{51}\)

\(\Rightarrow3A-A=3^{51}-3\)

\(\Rightarrow2A=3^{51}-3\)

\(\Rightarrow A=\frac{3^{51}-3}{2}\)

\(B=2-2^2+2^3-2^4+...+2^{2019}-2^{2020}\)

\(2B=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)

\(B+2B=2-2^{2021}\)

\(3B=2-2^{2021}\)

\(B=\frac{2-2^{2021}}{3}\)

NV
24 tháng 6 2019

\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(C=1-\frac{1}{2009}\)

\(C=\frac{2008}{2009}\)

\(D=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(D=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(D=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(D=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

20 tháng 4 2017

ai nhanh k 2 lan

11 tháng 7 2017

các bạn giải nhanh nha mai mk nộp bài nhanh nha

Bài 1:

a) Ta có: \(\frac{-5}{7}+\frac{2}{7}+\frac{4}{-9}+\frac{4}{9}\)

\(=-\frac{3}{7}+\frac{-4}{9}+\frac{4}{9}\)

\(=-\frac{3}{7}\)

b) Ta có: \(\left(\frac{1}{2}:\frac{3}{4}\right)^2\)

\(=\left(\frac{1}{2}\cdot\frac{4}{3}\right)^2\)

\(=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)

c) Ta có: \(\frac{1}{2}+\frac{3}{4}-\left(\frac{4}{5}+\frac{3}{4}\right)\)

\(=\frac{1}{2}+\frac{3}{4}-\frac{4}{5}-\frac{3}{4}\)

\(=\frac{1}{2}-\frac{4}{5}\)

\(=\frac{5}{10}-\frac{8}{10}=\frac{-3}{10}\)

d) Ta có: \(5^6:5^4+2^3\cdot2^2-225:15^2\)

\(=5^2+2^5-\frac{15^2}{15^2}\)

\(=25+32-1\)

\(=56\)

e) Ta có: \(\frac{7}{23}+\frac{4}{17}-\frac{7}{23}+\frac{13}{17}\)

\(=\frac{4}{17}+\frac{13}{17}\)

\(=\frac{17}{17}=1\)

g) Ta có: \(19\frac{1}{4}\cdot\frac{7}{12}-15\frac{1}{4}\cdot\frac{7}{12}\)

\(=\frac{7}{12}\left(19+\frac{1}{4}-15-\frac{1}{4}\right)\)

\(=\frac{7}{12}\cdot4=\frac{7}{3}\)