K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

1)a) (2x+1)(x-2)-2x\(^2\).(1-3x)

= 2x\(^2\)-4x+x-2-2x\(^2\)-6x\(^3\)

= -3x-2-6x\(^3\)

d)bài này mình ko biết kẻ thế nào nên bạn tự làm nha hình như kết quả ra x\(^2\)-4x-4 ko có dư thì phải

2)a) x\(^3\)+x\(^2\)-4x-4

= x\(^2\).(x+1)-4.(x+1)

=(x+1).(x\(^2\)-4)

=(x+1).(x-2).(x+2)

b) 2x\(^2\)-9x-11

=2x\(^2\)+2x-11x-11

=2x.(x+1)-11.(x+1)

=(x+1).(2x-11)

c) ax-ay-x\(^2\)+2xy-y\(^2\)

=a.(x-y)-(x\(^2\)-2xy+y\(^{^{ }2}\))

=a.(x-y)-(x-y)\(^2\)

=(x+y).(a-x+y)

d)4xy\(^4\)-36x\(^3\)y\(^2\)

=4xy\(^2\).(y\(^2\)-9x\(^2\))

=4xy\(^2\).(y-3x).(y+3x)

3)a) x\(^2\) thì mình biết chứ mũ 3 thì ko chắc đúng

b) 3x\(^2\)-5x-2=0

3x\(^2\)-2-5x=0

3x\(^2\)+3-5-5x=0

3.(x\(^2\)+1)-5.(1+x)=0

3.(x+1).(x-1)-5.(x+1)=0

3.(x+1).(x-1-5)=0

3.(x+1).(x-6)=0

Vậy x+1=0 hoặc x-6=0

x=(-1) x=6

c)(x+1)\(^2\)=(x+1)

(x+1).(x+1)-(x+1)=0

(x+1).(x+1-1)=0

(x+1).x=0

Vậy x=0 hoặc x+1=0

x=(-1)

d)(x-4).(x+3)-2x.(4-x)=0

(x-4).(x+3)+2x.(x-4)=0

(x-4).(x+3+2x)=0

(x-4).(3x+3)=0

3.(x-4).(x+1)=0

Vậy x-4=0 hoặc x+1=0

x=4 x=(-1)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

Bài làm

a) 4x2 - 6x 

= 2x( 2x - 3 )

b) 9x4y3 + 3x2y

= 3x2y3( 3x2 + y )

c) x- 2x+ 5x

= x( x2 - 2x + 5 )

d) 3x( x - 1 ) + 5( x - 1 )

= ( x - 1 )( 3x + 5 )

e) 2x2( x + 1 ) + 4( x + 1 )

= ( x + 1 )( 2x2 + 4 )

= ( x + 1 )2( x2 + 2 )

= 2( x + 1 )( x2 + 2 )

f) -3x - 6xy + 9xz

= -( 3x + 6xy - 9xz )

= -3x( 1 + 2y - 3z )

# Học tốt #

1 tháng 11 2018

Bài 1:

a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)

b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]

= 2xy.(x-y-1).(x+y+1)

1 tháng 11 2018

c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2

= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)

Bài 2:

a) (x+2).(x^2-2x+4) - (x^3+2x) = 0

x^3 + 8 - x^3 - 2x = 0

8 - 2x = 0

x = 4

b) x^2 - 2x - 8 = 0

x^2 +2x - 4x - 8 = 0

x.(x+2) - 4.(x+2) = 0

(x+2).(x-4) = 0

...

bn tự làm tiếp nha

9 tháng 8 2017

a) 4x2-8x=0

   (2x)2-2.2.2x+4-4=0

  (2x-2)2 =4

   2x-2=2

   2x  =4

    x=2

Nhớ k cho mk nha

9 tháng 7 2019

Bài 1:tìm x ,biết:

a) (2x - 1)(3x + 2) - 6x(x + 1) = 0

\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)

\(\Leftrightarrow-5x=2\)

\(\Leftrightarrow x=\frac{-2}{5}\)

b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)

\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)

\(\Leftrightarrow-10x=-4\)

\(\Leftrightarrow x=\frac{2}{5}\)

c) \(4x^2-1=2\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)

\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)

b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)

\(=1.\left(2x-1\right)\)

c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)

\(=\left(x-4-2y\right)\left(x-4+2y\right)\)

d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)

\(=\left(3x-2-y\right)\left(3x-2+y\right)\)

e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)

\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)

\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)