Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
B1:
A = \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
A = \(4x^2+4x+1+8x^2-2+4x^2-4x+1\)
A = \(16x^2\)
B = \(x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
B = \(x\left(x^2-16\right)-x^4+1\)
B = \(x^3-16x-x^4+1\)
C = \(\left(x^2-1\right)\left(x-3\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
C = \(x^3-3x^2-x+3-x^3+27\)
C = \(-3x^2-x+30\)
![](https://rs.olm.vn/images/avt/0.png?1311)
- Viết 7 hằng đẳng thức đáng nhớ :
\(\left(A+B\right)^2=A^2+2AB+B^2\)
\(\left(A-B\right)^2=A^2-2AB+B^2\)
\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)
\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)
\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)
\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)
- Áp dụng :
\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)
\(b,\left(\dfrac{5x-1}{2}\right)^2=\dfrac{\left(5x-1\right)^2}{2^2}=\dfrac{25x^2-10x+1}{4}\)
\(c,\left(\dfrac{1}{3x-3}\right)\left(\dfrac{1}{3x+3}\right)=\dfrac{1.1}{\left(3x-3\right)\left(3x+3\right)}=\dfrac{1}{9x^2-9}\)
\(d,\left(2x+3\right)^3=8x^3+36x^2+54x+27\)
\(e,\left(\dfrac{1}{4y-2x}\right)^2=\dfrac{1}{\left(4y-2x\right)^2}=\dfrac{1}{16y^2-16xy+4x^2}\)
\(f,\left(2x-y\right)\left(4x^2+2xy+y^2\right)=\left(2x\right)^3-y^3=8x^3-y^3\)
\(g,\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)
\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)
\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)
\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)
\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)
\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)
\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)
\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.3-4y+24+6y=y+27+3y\)
\(6y-4y-y-3y=27-24-3\)
\(-2y=0\Rightarrow y=0\)
\(b.5-\left(x-6\right)=4\left(3-2x\right)\)
\(5-x+6=12-8x\)
\(8x-x=12-6-5\)
\(7x=1\Rightarrow x=\frac{1}{7}\)
\(c.\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)
\(2x^2-3x+2x-3=2x^2+10x-x-5\)
\(\left(2x^2-2x^2\right)-\left(3x-2x+10x-x\right)=-5+3\)
\(-10x=-2\Rightarrow x=\frac{1}{5}\)
\(d.2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(2x\left(x^2+4x+4\right)-8x^2=\left(2x-4\right)\left(x^2+2x+4\right)\)
\(2x^3+8x^2+8x-8x^2=2x^3+4x^2+8x-4x^2-8x-16\)
\(\left(2x^3-2x^3\right)+\left(8x^2-8x^2-4x^2+4x^2\right)+\left(8x-8x+8x\right)=-16\)
\(8x=-16\Rightarrow x=-2\)
\(e.\left(x-3\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
\(x^2+4x-3x-12-6x+4=x^2-8x+16\)
\(\left(x^2-x^2\right)+\left(4x-3x-6x+8x\right)=16-4+12\)
\(3x=24\Rightarrow x=8\)
\(f.\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x+1\right)\left(x-1\right)\)
\(x^3+1-2x=x\left(x^2-1\right)\)
\(\left(x^3-x^3\right)-\left(2x-x\right)=-1\)
\(-x=-1\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
pt <=> \(x^2+4x+4+x^2-6x+9=2x^2+14x\)
<=> \(2x^2-2x+13=2x^2+14x\)
<=> \(16x=13\)
<=> \(x=\frac{13}{16}\)
b)
pt <=> \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)
<=> \(2x^3+6x=2x^3\)
<=> \(6x=0\)
<=> \(x=0\)
c)
pt <=> \(\left(x^3-3x^2+3x-1\right)-125=0\)
<=> \(\left(x-1\right)^3=125\)
<=> \(x-1=5\)
<=> \(x=6\)
d)
pt <=> \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
<=> \(\left(x-1\right)^2+\left(y+2\right)^2=0\) (1)
CÓ: \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)
=> \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DÁU "=" XẢY RA <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e)
pt <=> \(2x^2+8x+8+y^2-2y+1=0\)
<=> \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)
TA LUÔN CÓ: \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )
<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x
<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9
<=> -16x = -13
<=> x = 13/16
b) ( x + 1 )3 + ( x - 1 )3 = 2x3
<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3
<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1
<=> 6x = 0
<=> x = 0
c) x3 - 3x2 + 3x - 126 = 0
<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0
<=> ( x - 1 )3 = 125
<=> ( x - 1 )3 = 53
<=> x - 1 = 5
<=> x = 6
d) x2 + y2 - 2x + 4y + 5 = 0
<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e) 2x2 + 8x + y2 - 2y + 9 = 0
<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0
<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)
\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1 ) Thực hiện phép tính :
a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)
\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)
\(=-5xyz^2+6x^2yz^2\)
b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2x-2-x^3\)
c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)
\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)
\(=x^4-2x^3-37x^2+15x-7\)
d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2+y^3\)
e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)
( để xem lại )
2 Tìm x
a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)
\(\Leftrightarrow21x=7\)
\(\Leftrightarrow x=3\)
b ) Sai đề
c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)
( Để xem lại )
mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề
Bài 1:
\(=\dfrac{\left(\dfrac{1}{4}y-x\right)\left(\dfrac{1}{16}y^2+\dfrac{1}{4}xy+x^2\right)}{\dfrac{1}{4}y-x}=\dfrac{1}{16}y^2+\dfrac{1}{4}xy+x^2\)
Câu 2:
\(\Leftrightarrow x-3+\left(2x+1\right)^2=20\)
\(\Leftrightarrow4x^2+4x+1+x-3=20\)
\(\Leftrightarrow4x^2+5x+2-20=0\)
=>4x^2+5x-18=0
hay \(x\in\left\{\dfrac{-5+\sqrt{313}}{8};\dfrac{-5-\sqrt{313}}{8}\right\}\)