K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

\(=\dfrac{\left(\dfrac{1}{4}y-x\right)\left(\dfrac{1}{16}y^2+\dfrac{1}{4}xy+x^2\right)}{\dfrac{1}{4}y-x}=\dfrac{1}{16}y^2+\dfrac{1}{4}xy+x^2\)

Câu 2: 

\(\Leftrightarrow x-3+\left(2x+1\right)^2=20\)

\(\Leftrightarrow4x^2+4x+1+x-3=20\)

\(\Leftrightarrow4x^2+5x+2-20=0\)

=>4x^2+5x-18=0

hay \(x\in\left\{\dfrac{-5+\sqrt{313}}{8};\dfrac{-5-\sqrt{313}}{8}\right\}\)

5 tháng 7 2017

B1:

A = \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)

A = \(4x^2+4x+1+8x^2-2+4x^2-4x+1\)

A = \(16x^2\)

B = \(x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

B = \(x\left(x^2-16\right)-x^4+1\)

B = \(x^3-16x-x^4+1\)

C = \(\left(x^2-1\right)\left(x-3\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

C = \(x^3-3x^2-x+3-x^3+27\)

C = \(-3x^2-x+30\)

6 tháng 7 2017

tks hl nha

3 tháng 12 2017

- Viết 7 hằng đẳng thức đáng nhớ :

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A-B\right)^2=A^2-2AB+B^2\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)

\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)

- Áp dụng :

\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(b,\left(\dfrac{5x-1}{2}\right)^2=\dfrac{\left(5x-1\right)^2}{2^2}=\dfrac{25x^2-10x+1}{4}\)

\(c,\left(\dfrac{1}{3x-3}\right)\left(\dfrac{1}{3x+3}\right)=\dfrac{1.1}{\left(3x-3\right)\left(3x+3\right)}=\dfrac{1}{9x^2-9}\)

\(d,\left(2x+3\right)^3=8x^3+36x^2+54x+27\)

\(e,\left(\dfrac{1}{4y-2x}\right)^2=\dfrac{1}{\left(4y-2x\right)^2}=\dfrac{1}{16y^2-16xy+4x^2}\)

\(f,\left(2x-y\right)\left(4x^2+2xy+y^2\right)=\left(2x\right)^3-y^3=8x^3-y^3\)

\(g,\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)

1 tháng 3 2020

\(a.3-4y+24+6y=y+27+3y\)

\(6y-4y-y-3y=27-24-3\)

\(-2y=0\Rightarrow y=0\)

\(b.5-\left(x-6\right)=4\left(3-2x\right)\)

\(5-x+6=12-8x\)

\(8x-x=12-6-5\)

\(7x=1\Rightarrow x=\frac{1}{7}\)

\(c.\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)

\(2x^2-3x+2x-3=2x^2+10x-x-5\)

\(\left(2x^2-2x^2\right)-\left(3x-2x+10x-x\right)=-5+3\)

\(-10x=-2\Rightarrow x=\frac{1}{5}\)

\(d.2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(2x\left(x^2+4x+4\right)-8x^2=\left(2x-4\right)\left(x^2+2x+4\right)\)

\(2x^3+8x^2+8x-8x^2=2x^3+4x^2+8x-4x^2-8x-16\)

\(\left(2x^3-2x^3\right)+\left(8x^2-8x^2-4x^2+4x^2\right)+\left(8x-8x+8x\right)=-16\)

\(8x=-16\Rightarrow x=-2\)

\(e.\left(x-3\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(x^2+4x-3x-12-6x+4=x^2-8x+16\)

\(\left(x^2-x^2\right)+\left(4x-3x-6x+8x\right)=16-4+12\)

\(3x=24\Rightarrow x=8\)

\(f.\left(x+1\right)\left(x^2-x+1\right)-2x=x\left(x+1\right)\left(x-1\right)\)

\(x^3+1-2x=x\left(x^2-1\right)\)

\(\left(x^3-x^3\right)-\left(2x-x\right)=-1\)

\(-x=-1\Rightarrow x=1\)

1 tháng 3 2020
https://i.imgur.com/bITRbkX.jpg
16 tháng 8 2020

a)

pt <=>     \(x^2+4x+4+x^2-6x+9=2x^2+14x\)

<=>     \(2x^2-2x+13=2x^2+14x\)

<=>     \(16x=13\)

<=>     \(x=\frac{13}{16}\)

b)

pt <=>     \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)

<=>   \(2x^3+6x=2x^3\)

<=>   \(6x=0\)

<=>   \(x=0\)

c)

pt <=>    \(\left(x^3-3x^2+3x-1\right)-125=0\)

<=>   \(\left(x-1\right)^3=125\)

<=>   \(x-1=5\)

<=>   \(x=6\)

d)

pt <=>   \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

<=>   \(\left(x-1\right)^2+\left(y+2\right)^2=0\)     (1)

CÓ:   \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)

=>   \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\)       (2)

TỪ (1) VÀ (2) =>    DÁU "=" XẢY RA <=>   \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)

<=>     \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e)

pt <=>   \(2x^2+8x+8+y^2-2y+1=0\)

<=>   \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)

TA LUÔN CÓ:   \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\) 

<=>     \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

16 tháng 8 2020

a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )

<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x

<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9

<=> -16x = -13

<=> x = 13/16

b) ( x + 1 )3 + ( x - 1 )3 = 2x3

<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3

<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1

<=> 6x = 0

<=> x = 0

c) x3 - 3x2 + 3x - 126 = 0

<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0

<=> ( x - 1 )3 = 125

<=> ( x - 1 )3 = 53

<=> x - 1 = 5

<=> x = 6

d) x2 + y2 - 2x + 4y + 5 = 0

<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0

<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e) 2x2 + 8x + y2 - 2y + 9 = 0

<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0

<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)

\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

3 tháng 9 2016

1 ) Thực hiện phép tính :

a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)

\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)

\(=-5xyz^2+6x^2yz^2\)

b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2x-2-x^3\)

c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)

\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)

\(=x^4-2x^3-37x^2+15x-7\)

d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)

\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)

\(=2x^3-x^2y-2xy^2+y^3\)

e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)

( để xem lại )

2 Tìm x 

a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)

\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)

\(\Leftrightarrow21x=7\)

\(\Leftrightarrow x=3\)

b ) Sai đề 

c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)

( Để xem lại )

5 tháng 9 2016

mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề