\(\left(x-2\right)^{20}+\left(y+1\right)^{30}\le0\)

Giúp...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

\(\left(x-2\right)^{20}\ge0\forall x\\ \left(y+1\right)^{30}\ge0\forall x\\ \Rightarrow\left(x-2\right)^{20}+\left(y+1\right)^{30}\ge0\forall x\)

\(\left(x-2\right)^{20}+\left(y+1\right)^{30}=0\)

Để thỏa mãn điều kiện thì \(\left\{{}\begin{matrix}\left(x+2\right)^{20}=0\\\left(y+1\right)^{30}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

Vậy ...

10 tháng 8 2017

ta có : \(\left(x-2\right)^{20}\ge0\) với mọi x

\(\left(y+1\right)^{30}\ge0\) với mọi y

\(\Rightarrow\) \(\left(x-2\right)^{20}+\left(y+1\right)^{30}\ge0\) với mọi giá trị của x ; y

\(\left(x-2\right)^{20}+\left(y+1\right)^{30}\le0\)

\(\Rightarrow\) \(\left(x-2\right)^{20}+\left(y+1\right)^{30}=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{20}=0\\\left(y+1\right)^{30}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) vậy \(x=2;y=-1\)

3 tháng 11 2015

kết quả là 6596 nhá 
Tick mình nha

16 tháng 8 2015

 \(\left(x-1\right)^2+\left(y-3\right)^2=0\)

mà  \(\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0\)

nên để: \(\left(x-1\right)^2+\left(y-3\right)^2=0\) thì:

  \(x-1=y-3=0\Rightarrow x=1;y=3\)

 

16 tháng 8 2015

a)x-1=y-3=0

x=1 va y=3

b)2x-1/2=y+3/2=0

x=1/4 va y=-3/2

c)1/2x-5=y2-1/4=0

1/2.x=5 va y2=1/4

x=10 va y=1/2 hoac x=10 va y=-1/2

8 tháng 9 2015

1/2x-5=y2-1/4=0

1/2.x=5 va y2=1/4

x=10 va y=1/2 hoac x=10 va y=-1/2

8 tháng 9 2015

Á thiếu, \(y=\frac{-1}{2}\)nữa

7 tháng 6 2016

a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.

b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.