Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(144=2^4.3^2.5^0\)
Suy ra: \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
Suy ra: \(2^{x-2}=2^4;3^{y-3}=3^2;5^{z-1}=5^0\)
Suy ra: \(x-2=4;y-3=2\) và \(z-1=0\)
Hay \(x=6;y=5\) và \(z=1\)
Cái câu đầu bn nhập sai rùi
Câu 2
\(x^5=2x^7\)
\(\frac{x^5}{x^7}=2\)
\(\frac{1}{x^2}=2\)
\(\left(\frac{1}{x}\right)^2=2\)
\(\frac{1}{x}=\sqrt{2}\)
Câu cuối
Ta thấy 2, 3, 5 đều là số nguyên tố nên
Ta phân tích 144 thành số nguyên tố \(2^4\cdot3^2\)
Thay vào Ta tính x=6; y=5
Vì số nào lũy thừa 0 lên cũng bằng 1 nên
Ta có thể viết \(144=2^4\cdot3^2\cdot5^0\)
Thay vào ta tính z=1
o phan dau tien ta co
x-5nhan căn bậc hai của x bằng 0
=>5 nhan can bac hai cua x bang x
=>ta co the thay x bang 5 nhan can bac hai cua x
thay vao ta duoc 5 nhan can bac hai cua x nhan voi5 nhan can bac hai cua x bang x^2
25*x=x^2=x*x
suy ra x=25
vay x=25
o phan tiep theo
x5=2x7
=>x.x.x.x.x.1=2.x.x.x.x.x.x.x
=>1=2.x.x
=>1/2=x*x
=>x= can bac hai cua 1/2
o phan cuoi cung
2x-2.3y-3.5z-1=144
=>2^x/4.3^y/9.5^z/5=144
=>2^x.3^y.5^z=144/4/9/5=0.8
ma o day ta thay 0.8 khong chua h chia het cho y x va z
vay ko co cap x y z nao thoa man
1) Ta có:
\(\frac{1+2y}{18}=\frac{1+4y}{24}\)\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)
=> 24 + 48y = 18 + 72y
=> 72y - 48y = 24 - 18
=> 24y = 6
\(\Rightarrow y=\frac{6}{24}=\frac{1}{4}\)
Thay \(y=\frac{1}{4}\) vào đề bài ta có:
\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)
\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)
\(\Rightarrow\frac{3}{2}.\frac{1}{18}=\frac{5}{2}:6x\)
\(\Rightarrow\frac{1}{12}=\frac{5}{2}:6x\)
\(\Rightarrow6x=\frac{5}{2}:\frac{1}{12}=\frac{5}{2}.12=30\)
=> x = 30 : 6 = 5
Vậy \(x=5;y=\frac{1}{4}\)
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
\(=\frac{1}{x+y+z}\) (theo đề bài)
\(\Rightarrow x+y+z=\frac{1}{2}\)
Ta có: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2\)
\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=2+1\)
\(\Rightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3\)
\(\Rightarrow\frac{\frac{1}{2}+1}{x}=\frac{\frac{1}{2}+2}{y}=\frac{\frac{1}{2}-3}{z}=3\)
\(\Rightarrow\frac{3}{2}:x=\frac{5}{2}:y=\frac{-5}{2}:z=3\)
\(\Rightarrow\begin{cases}x=\frac{3}{2}:3=\frac{1}{2}\\y=\frac{5}{2}:3=\frac{5}{6}\\z=\frac{-5}{2}:3=\frac{-5}{6}\end{cases}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
Nguyễn Thanh Hằng Nhã Doanh ngonhuminh nguyen thi vang mấy ban giup mk voi
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
\(144=2^4\cdot3^2\cdot1=2^4\cdot3^2\cdot5^0=2^{x-2}\cdot3^{y-3}\cdot5^{z-1}\\\Rightarrow \left\{{}\begin{matrix}x-2=4\\y-3=2\\z-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=6\\y=5\\z=1\end{matrix}\right.\)