Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
a ) Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|+\left|c\right|+\left|d\right|\ge\left|a+b+c+d\right|\)ta có :
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)
\(A=\left|3-x\right|+\left|4-x\right|+\left|x-5\right|\ge\left|\left(3-x\right)+\left(4-x\right)+\left(x-5\right)\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi : \(\hept{\begin{cases}x-5\le0\\x-4=0\\x-3\ge0\end{cases}\Rightarrow x=4}\)
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
TL :
A=|x- 5|+2-x
Có :
x - 5 = 0 => x = 5
2 - x = 0 => x = 2
a , Viết biểu thước A dưới dạng không có dấu giá trị tuyệt đối là :
x - 5 = 2 - x
b ,
Giá trị nhỏ nhất của A là :
|5 - 5 | = 2 - 2
| 0 | = 0
=> = 0
P/S : Mik nghĩ thế !! Không chắc đâu ạ .
# Hok tốt
# Trâm
Sửa bài:
a) Với: \(x\ge5\)có: \(\left|x-5\right|=x-5\)
=> \(A=x-5+2-x=-3\)
Với \(x< 5\)có: \(\left|x-5\right|=5-x\)
=> \(A=5-x+2-x=7-2x\)
b) \(A=\left|x-5\right|+2-x\ge x-5+2-x=-3\)
Dấu "=" xảy ra <=> \(x-5\ge0\Leftrightarrow x\ge5\)
Vậy min A = -3 khi và chỉ khi \(x\ge5\)