Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
a) \(\dfrac{5+x}{4-x}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(5+x\right)=4-x\)
\(\Leftrightarrow2\left(5+x\right)-\left(4-x\right)=0\)
\(\Leftrightarrow10+2x-4+x=0\)
\(\Leftrightarrow6+3x=0\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
b) \(\dfrac{25}{14}=\dfrac{x+7}{x-4}\)
\(\Leftrightarrow25\left(x-4\right)=14\left(x+7\right)\)
\(\Leftrightarrow25\left(x-4\right)-14\left(x+7\right)=0\)
\(\Leftrightarrow25x-100-14x-98=0\)
\(\Leftrightarrow11x-198=0\)
\(\Leftrightarrow11x=198\)
\(\Leftrightarrow x=18\)
Vậy x=18
c) \(\dfrac{3x-5}{x+4}=\dfrac{5}{2}\)
\(\Leftrightarrow2\left(3x-5\right)=5\left(x+4\right)\)
\(\Leftrightarrow2\left(3x-5\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow6x-10-5x-20=0\)
\(\Leftrightarrow x-30=0\)
\(\Leftrightarrow x=30\)
Vậy x=30
d) \(\dfrac{3x-1}{2x+1}=\dfrac{3}{7}\)
\(\Leftrightarrow7\left(3x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow7\left(3x-1\right)-3\left(2x+1\right)=0\)
\(\Leftrightarrow21x-7-6x-3=0\)
\(\Leftrightarrow15x-10=0\)
\(\Leftrightarrow15x=10\)
\(\Leftrightarrow x=\dfrac{10}{15}=\dfrac{2}{3}\)
Vậy \(x=\dfrac{2}{3}\)
\(\text{a) }3x+\dfrac{4}{9}=2x+\dfrac{11}{18}\\ \Leftrightarrow3x-2x=\dfrac{11}{18}-\dfrac{4}{9}\\ \Leftrightarrow x=\dfrac{1}{6}\\ \text{Vậy }x=\dfrac{1}{6}\\ \)
\(\text{b) }\dfrac{7}{12}+\dfrac{2}{3}:x=\dfrac{5}{8}\\ \Leftrightarrow\dfrac{2}{3}:x=\dfrac{1}{24}\\ \Leftrightarrow x=16\\ \text{Vậy }x=16\\ \)
\(\text{c) }\left|2.5-x\right|-\dfrac{1}{5}=1.2\\ \Leftrightarrow\left|2.5-x\right|=1.4\\ \Leftrightarrow\left[{}\begin{matrix}2.5-x=-1.4\\2.5-x=1.4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.9\\x=1.1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{39}{10}\\x=\dfrac{11}{10}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{39}{10}\text{ hoặc }x=\dfrac{11}{10}\\ \)
\(\text{d) }2^{x+1}+2^{x+2}=192\\ \Leftrightarrow2^x\cdot2+2^x\cdot4=192\\ \Leftrightarrow2^x\left(2+4\right)=192\\ \Leftrightarrow2^x\cdot6=192\\ \Leftrightarrow2^x=32\\ \Leftrightarrow2^x=2^5\\ \Leftrightarrow x=5\\ \text{Vậy }x=5\\ \)
áp dụng công thức : \(sin^2\alpha+cos^2\alpha=1\)
ta có : \(P=3sin^2\alpha+4cos^2\alpha=3sin^2\alpha+3cos^2\alpha+cos^2\alpha\)
\(P=3\left(sin^2\alpha+cos^2\alpha\right)+\left(cos\alpha\right)^2=3\left(1\right)+\left(\dfrac{1}{2}\right)^2\)
\(P=3+\dfrac{1}{4}=\dfrac{13}{4}\)
vậy chọn đáp án \(C\)
áp dụng công thức : \(sin^2\alpha+cos^2\alpha=1\)
ta có : \(P=3sin^2\alpha+4cos^2\alpha=3sin^2\alpha+3cos^2\alpha+cos^2\alpha\)
\(P=3\left(sin^2\alpha+cos^2\alpha\right)+\left(cos\alpha\right)^2=3\left(1\right)+\left(\dfrac{1}{2}\right)^2\)
\(P=3+\dfrac{1}{4}=\dfrac{13}{4}\)
vậy chọn đáp án \(C\)
\(\Leftrightarrow-\dfrac{93}{23}:\left(\dfrac{13}{4}-x\cdot\dfrac{5}{3}\right)=1-\dfrac{99}{46}=-\dfrac{53}{46}\)
\(\Leftrightarrow\dfrac{13}{4}-\dfrac{5}{3}x=-\dfrac{99}{23}:-\dfrac{53}{46}=\dfrac{198}{53}\)
=>5/3x=-103/212
hay x=-309/1060
Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)
\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)
\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)
Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)
2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)
=>-1/2x+2/3=28/15:(-5/7)=-196/75
=>-1/2x=-82/25
=>x=164/25