Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a: \(y=-x^2+2x+3\)
y>0
=>\(-x^2+2x+3>0\)
=>\(x^2-2x-3< 0\)
=>(x-3)(x+1)<0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\)
=>-1<x<3
\(y=\dfrac{1}{2}x^2+x+4\)
y>0
=>\(\dfrac{1}{2}x^2+x+4>0\)
\(\Leftrightarrow x^2+2x+8>0\)
=>\(x^2+2x+1+7>0\)
=>\(\left(x+1\right)^2+7>0\)(luôn đúng)
b: \(y=-x^2+2x+3< 0\)
=>\(x^2-2x-3>0\)
=>(x-3)(x+1)>0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x>-1\end{matrix}\right.\)
=>x>3
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x< -1\end{matrix}\right.\)
=>x<-1
\(y=\dfrac{1}{2}x^2+x+4\)
\(y< 0\)
=>\(\dfrac{1}{2}x^2+x+4< 0\)
=>\(x^2+2x+8< 0\)
=>(x+1)2+7<0(vô lý)
1.
\(y\left(0\right)=-4\) ; \(y\left(5\right)=-4\) ; \(y\left(\frac{5}{3}\right)=\frac{392}{27}\)
\(\Rightarrow y_{max}=\frac{392}{27}\) khi \(x=\frac{5}{3}\)
2.
\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)
\(3x+m\le0\Rightarrow x\le-\frac{m}{3}\)
Hệ có nghiệm khi \(-\frac{m}{3}\ge\frac{1}{2}\Rightarrow m\le-\frac{3}{2}\)
3.
\(P=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(P\ge2\sqrt{\frac{a+b}{a+b}}+\frac{3}{1}=5\)
\(P_{min}=5\) khi \(a=b=\frac{1}{2}\)
4.
\(y=2x+\frac{3}{x}\ge2\sqrt{\frac{6x}{x}}=2\sqrt{6}\)
Dấu "=" xảy ra khi \(2x=\frac{3}{x}\Leftrightarrow x=\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{2}\)
a)
\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)
\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)
1. a, | 2x - 3 | + x = 5
<=> | 2x - 3| = 5 - x
<=> \(\left[{}\begin{matrix}2x-3=5-x\\2x-3=-5+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=8\Rightarrow x=\dfrac{8}{3}\\x=-2\end{matrix}\right.\)
b, 3x - 2 +2| x + 3| = 0
Với x \(\ge1\) có:
3x - 2 + 2x + 6 = 0
<=> 5x = -4
<=> \(x=-\dfrac{4}{5}\)
Với x < 1 có:
-3x - 2 - 2x + 6 = 0
<=> -5x = -4
<=> x = \(\dfrac{4}{5}\) thử lại k thỏa mãn
Vậy có 1 gt x tm đề là x = -4/5
c, Tương tự b
Bài 2: gần tương tự bài 1
Bài 3:
a, Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)
đẳng thắc xảy ra khi \(0\le x\le8\)
Vậy A_min = 8 khi.....
b, Áp dụng bđt như ý a ta có:
\(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
đẳng thức xảy ra khi \(2\le x\le5\)
Vậy...............