Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x (x-5) -(x2-10x +25)=0
\(\Leftrightarrow\)2x(x-5)-(x-5)2=0
\(\Leftrightarrow\)(x-5)(2x-x+5)=0
\(\Leftrightarrow\)(x-5)(x+5)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
b) x2 - 9 +3x(x+3) = 0
\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0
\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0
\(\Leftrightarrow\)(x+3)(x-3+3x)=0
\(\Leftrightarrow\)(x+3)(4x-3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)
c) x3 - 16x = 0
\(\Leftrightarrow\)x(x2-16)=0
\(\Leftrightarrow\)x(x-4)(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) (2x+3)(x-2) - (x2 -4x+4) = 0
\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0
\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0
\(\Leftrightarrow\)(x-2)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
e) 9x2 -(x2 -2x +1)=0
\(\Leftrightarrow\)(3x)2-(x-1)2=0
\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0
\(\Leftrightarrow\)(2x+1)(4x-1)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
f)x3-4x2 -9x +36 = 0
\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0
\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0
\(\Leftrightarrow\)(x-4)(x2-9)=0
\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
g) 3x - 6 = (x-1).(x-2)
\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)
\(\Leftrightarrow\)x-1=3
\(\Leftrightarrow\)x=4
i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)
k) x2 -1 = (x-1).(2x+3)
\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)
\(\Leftrightarrow\)x+1=2x+3
\(\Leftrightarrow\)x-2x=3-1
\(\Leftrightarrow\)-x=2
\(\Leftrightarrow\)x=-2
l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6
\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6
\(\Leftrightarrow\)6x-8=6
\(\Leftrightarrow\)6x=14
\(\Leftrightarrow\)x=\(\frac{7}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\)
Ta có:
\(x^2+4x+6\)
\(=x^2+2.x.2+4+2\)
\(=\left(x+2\right)^2+2\)
Vì \(\left(x+2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+2\right)^2+2\ge2\) với mọi x
\(\Rightarrow x^2+4x+6\) vô nghiệm
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
b) \(3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
c) \(2\left(x+3\right)x^2-3x=0\)
\(\Rightarrow x\left[2\left(x+3\right)x-3\right]=0\)
\(\Rightarrow x\left(2x^2+6x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2+6x-3=0\end{matrix}\right.\)
Ta có:
\(2x^2+6x-3\)
\(=2\left(x^2+3x-\dfrac{3}{2}\right)\)
\(=2\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}-\dfrac{3}{2}\right)\)
\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\)
Vì \(2\left(x+\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\ge-\dfrac{15}{2}\) với mọi x
\(\Rightarrow2x^2+6x-3\) vô nghiệm
\(\Rightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=0\)
\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=0\Leftrightarrow x=\frac{1}{2}\)
b, \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\Leftrightarrow12x-5=0\Leftrightarrow x=\frac{5}{12}\)
c, \(\left(x-5\right)^2-x\left(x-4\right)=9\Leftrightarrow x^2-10x+25-x^2+4x=9\)
\(\Leftrightarrow-6x+16=0\Leftrightarrow x=\frac{8}{3}\)
d, \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)
\(\Leftrightarrow-5x+21=0\Leftrightarrow x=\frac{21}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(25x^2-9=0\)
<=> \(\left(5x-3\right)\left(5x+3\right)=0\)
<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
<=> \(x^2+8x+16-x^2+8x-9=16\)
<=> \(16x+7=16\)
<=> \(16x=9\)
<=> \(x=\frac{9}{16}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)
Vậy S = {3/5 ; -3/5}
b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)
\(\Leftrightarrow9=0\left(vl\right)\)
Vậy S = \(\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 16x^2 - (4x - 5)^2 = 15
<=> 16x^2 - 16x^2 + 40x - 25 = 15
<=> 40x = 40
<=> x = 1
b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49
<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49
<=> 12x + 13 = 49
<=> 12x = 36
<=> x = 3
c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18
<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18
<=> 2 - 4x = 18
<=> -4x = 16
<=> x = -4
d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0
<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0
<=> 12x - 5 = 0
<=> 12x = 5
<=> x = 5/12
e) (x - 5)^2 - x(x - 4) = 9
<=> x^2 - 10x + 25 - x^2 + 4x = 9
<=> -6x + 25 = 9
<=> -6x = 9 - 25
<=> -6x = -16
<=> x = -16/-6 = 8/3
f) (x - 5)^2 + (x - 4)(1 - x) = 0
<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0
<=> -5x + 21 = 0
<=> -5x = -21
<=> x = 21/5
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\left(x-4\right)^2-25=0\)
<=> (x-4+5).(x-4-5) = 0
<=> (x+1)(x-9) = 0
<=> \(\left[\begin{matrix}x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = {-1;9}
2. \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)
<=> (2x-1)(2x-1+2-x) = 0
<=> (2x-1)(x+1) = 0
<=> \(\left[\begin{matrix}2x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}2x=1\\x=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0.5\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = {-1 ; 0,5}
3. \(x^2+6x+9=4x^2\)
<=> \(\left(x+3\right)^2-4x^2=0\)
<=> (x+3+2x)(x+3-2x) = 0
<=> (3x+3)(3-x) = 0
<=> \(\left[\begin{matrix}3x+3=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}3x=-3\\x=3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=3\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = {-1 ; 3}
4. (2x-5)(x+11) = (5-2x)(2x+1)
<=> (2x-5)(x+11) = - (2x-5)(2x+1)
<=> x + 11 = -2x - 1
<=> x+2x = -12
<=> 3x = -12
<=> x = -4
Vậy phương trình có một nghiệm duy nhất là x = -4
5. \(2x^2+5x+3=0\)
<=> \(2x^2+2x+3x+3=0\)
<=> \(2x\left(x+1\right)+3\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(2x+3\right)=0\)
<=> \(\left[\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = { -1 ; -3/2 }
1) (x-4)^2-25=0
<=> (x-4+5)(x-4-5)=0
\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
2) (2x-1)2+(2-x)(2x-1)=0
<=> (2x-1)(2+2-x)=0
<=> \(\left[\begin{matrix}x=\frac{1}{2}\\x=4\end{matrix}\right.\)
3) x^2+6x+9=4x^2
<=> 3x^2 -6x-9=0
<=> x^2 -2x -3=0
<=> x^2 -3x+x-3=0
<=> x(x-3)+(x-3)=0
<=> (x-3)(x+1)=0
=>\(\left[\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
4) (2x-5)(x+11)=(5-2x)(2x+1)
-(5-2x)(x+11)-(5-2x)(2x+1)=0
(5-2x)(x+11+2x+1)=0
=>\(\left[\begin{matrix}x=\frac{5}{2}\\x=-4\end{matrix}\right.\)
5)2x^2+5x+3=0
2x^2+2x+3x+3=0
2x(x+1)+3(x+1)=0
(x+1)(2x+3)=0
=>\(\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
a: \(\Leftrightarrow-2x^2+4x+x-2-2x^2=0\)
=>5x-2=0
hay x=2/5
b: \(\Leftrightarrow\left(x^2-1\right)\left(x-3\right)+\left(4-x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-3+4-x\right)=0\)
=>(x-1)(x+1)=0
=>x=1 hoặc x=-1
c: \(\Leftrightarrow-x^2+2x-30=0\)
\(\Leftrightarrow x^2-2x+30=0\)
hay \(x\in\varnothing\)