Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2/
a,Ta có: a+b+c=0
<=>(a+b+c)2=0
<=>a2+b2+c2+2(ab+bc+ca)=0
<=>2+2(ab+bc+ca)=0
<=>ab+bc+ca=\(\frac{-2}{2}=-1\)
<=>(ab+bc+ca)2=1
<=>a2b2+b2c2+c2a2+2abc(a+b+c)=1
<=>a2b2+b2c2+c2a2=1 (vì a+b+c=0)
Lại có: a2+b2+c2=2
<=>(a2+b2+c2)2=4
<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4
<=>a4+b4+c4+2=4 (vì a2b2+b2c2+c2a2=1)
<=>a4+b4+c4=2
b, tương tự a
1/
b, \(B=9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Vì \(\left(3x-1\right)^2\ge0\Rightarrow B=\left(3x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi x=1/3
Vậy Bmin = 1 khi x = 1/3
c,\(C=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow C=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi x=-1/2
Vậy...
d, \(D=2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow D=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi x=-1/2
Vậy...

\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)

dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy

#)Giải :
a) Để C/m a và b là hai số đối nhau => a + b = 0
Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)
\(\Rightarrowđpcm\)

Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
1)9x2-6x+1=0
<=>(3x-1)2=0
<=>3x-1=0
<=>x=\(\dfrac{1}{3}\)
2)bài này dùng cosi cũng được nhưng mình làm thông thường thôi
Từ đề bài =>(a+b+c)2-3(a2+b2+c2)=0
<=>a2+b2+c2+2ab+2bc+2ca-3a2-3b2-3c2=0
<=>-a2+2ab-b2-b2+2bc-c2-c2+2ca-a2=0
<=>-(a-b)2-(b-c)2-(c-a)2=0
<=>(a-b)2+(b-c)2+(c-a)2=0(1)
Do \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\)với mọi a,b,c
=>(1) tương đương \(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)<=>a=b=c
3)a)a+b=25 ab=136
=>(a+b)2-2ab=252-2.136
=>a2+2ab+b2-2ab=625-272
=>a2+b2=353
b)a2+b2=353
=>(a2+b2)2-2a2b2=3532-2.1362
=>a4+2a2b2+b4-2a2b2=87617
=>a4+b4=87617
1 ) \(9x^2-6x+1=0\)
\(\Leftrightarrow\left(3x-1\right)^2=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
Vậy phương trình có nghiệm \(x=\dfrac{1}{3}\) .