Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu x < -3/4 ta có
|4x+3| - |x-1| = -4x-3 - (-x+1) = 7
= -4x-3 + x -1 =7
x = -11/3
nếu x > 1 ta có
|4x+3| - |x-1| = 4x + 3 - x +1 = 7
=3x +4 =7
x=1
nếu -3/4 < x < 1 ta có
|4x+3| - |x-1| = 4x+3 + x -1 =7
= 5x -2 =7
x =9/5
1) x(x-2) + 3(x+5) + 4x -15 =0
=> x\(^2\) - 2x + 3x + 15 + 4x - 15 = 0
=> ( x\(^2\) -2x + 3x + 4x ) + 15 - 15 = 0
=> x \(^2\) -2x+3x+4x = 0
=> x(x-2+3+4)=0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2+3+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)
2) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=2017\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017.2017\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017^2\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}=2017^2\)
\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{c}{a+b}\right)=2017^2\)
\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{c}{a+b}\right)=2017^2\)
\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)
xin lỗi mik xin đc sửa lại 3 dòng cuối vì mik ghi nhầm :
\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{b}{a+c}\right)=2017^2\)
\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)=2017^2\)
\(\Rightarrow3+\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=2017^2\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)
\(\left(x^2+5\right)\left(x-3\right)>0\)
Th1 : \(\hept{\begin{cases}x^2+5>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>-5\\x< 3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x^2+5< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< -5\\x>3\end{cases}}}\)
a) \(\left(x^2+5\right)\left(x-3\right)>0\Leftrightarrow x-3>0\) (do \(x^2+5>0,\forall x\in R\)).
\(\Leftrightarrow x>3\).
b) \(\left(-x^2-17\right).\left(x+1\right)>0\Leftrightarrow-\left(x^2+17\right).\left(x+1\right)>0\)\(\Leftrightarrow-\left(x+1\right)>0\) ( do \(x^2+17>0\) ).
\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\).
c) \(-2\left(7-x\right)< 0\Leftrightarrow2x-14< 0\)\(\Leftrightarrow2x< 14\)\(\Leftrightarrow x< 7\).
d) \(\left(x-2\right).\left(x+2\right)< 0\Leftrightarrow x^2+2x-2x-4< 0\)\(\Leftrightarrow x^2-4< 0\) \(\Leftrightarrow x^2< 4\)\(\Leftrightarrow\left|x\right|< 2\)\(\Leftrightarrow-2< x< 2\).
\(A=\left(\frac{a+b}{b}\right).\left(\frac{b+c}{c}\right).\left(\frac{a+c}{a}\right)\)
Vì \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
\(\Rightarrow A=\frac{-c}{b}.\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)
\(\Rightarrow A=-1\)
a) P(x) có nghiệm x = 0
<=> 4.0+a=0
<=> 0+a=0
<=> a=0
b) P(x) có nghiệm x = -2
<=> 4.(-2)+a=0
<=> -8+a=0
<=> a=8
c) P(x) có nghiệm x = \(\frac{-1}{2}\)
<=> \(\frac{-1}{2}\).4 +a=0
<=> -2+a=0
<=> a=2
Chúc bạn học tốt nhá!
1) 4x+1-/x/=7
=>4x+1=7+/x/=7+x
=>4x=7+x+1
=>4x=8+x
=>4x-x=8
=>3x=8
=>x=8/3
từ từ, hơi sai,làm lại
4x+1-/x/=7
4x-/x/=7-1
4x-x=6
3x=6=>x=6/3=2
rồi đó