\(9^x-26.6^x+4^x>0\)

A S=R B S=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tìm tập nghiệm S của bất pt \(9^x-26.6^x+4^x>0\)

A S=R B S=\(R\backslash\left\{0\right\}\) C \(S=\left(0;+\infty\right)\) D [\(0;+\infty\) )

2 Tập nghiệm bất pt \(3^{1-x}+2.\left(\sqrt{3}\right)^{2x}\le7\) có dạng [a,b] với a<b. Gía trị của biểu thức P= b+a.\(log_23\)

A 0 B 1 C.2 D. 2\(log_23\)

3 tổng các nghiệm nguyên nhỏ hơn 5 của bất pt \(2^x\ge3-\frac{3}{2^x}\)

4 có bao nhiêu giá trị nguyên của x thỏa mãn bất pt \(x^{log_2x+4\le32}\)

5 tập ngiệm của bất pt \(x^{lnx}+e^{ln^2x}\le2e^4\) có dạng [a;b]. Tính a.b

A a.b=\(e^4\) B a.b=e C a.b=\(e^3\) D a.b=1

6 nghiệm của bất bất pt \(2^x-2\sqrt{2^x+1}>2\)

A x<3 B x<0 C x>3 và x<0 D x>3

7 Tập nghiệm của bất pt \(4^x-3.2^{x+1}+5\le0\)

A [0;5] B (0;\(log_25\) ) C [0;\(log_25\)] D \(x\le0\)\(x\ge log_25\)

8 Cho \(\Delta\) ABC vuông tại A, AB=2a và C=3a . Khi quay \(\Delta\)ABC quanh cạnh góc vuông AC thì đường gấp khúc ABC tạo thành một hình nón. Diện tích toàn phần của hình nón bằng

9 cho tam giác ABC vuông tại A , AB=3cm, AC=4cm . Gọi V1 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và V2 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC . Khi đó , tỷ số \(\frac{V1}{V2}\) bằng

10 Cho hình chữ nhật ABCD có AB=1 và AD=2. Gọi M,N lần lượ là rung điểm của AB và BC. Quay hình chữ nhật đó xung quanh trục MN , ta dc một hình trụ, Diện tích toàn phần của hình trụ bằng

11 cho tam giác ABC có ABC =\(45^0\) ,ACB =\(30^0\) ,AB=2. quay tam giác ABC xung quanh cạnh BC ta dc khối ròn xoay có thể tích V bằng

12 Cho hình chóp S.ABCD có đáy là hình tang vuông tại A,B .Biết SA vuông góc với (ABCD) ,AB=BC=3a,AD=6a, SA=\(a\sqrt{7}\).Gọi E là trung điểm AD.Tính bán kính mặt cầu đi qua các điểm S,A,B,C,E

13 tam giác ABC vuông cân ở đỉnh A có cạnh huyền bằng 1 . Quay tam giác ABC quanh trục BC thì được khối tròn xoay có thể tích bằng

14 Cho hình chóp tam giác đều S.ABC. Gọi V1 là thể tích khối nón có đỉnh S và có đường tròn đáy là đường tròn nội tiếp tam giác ABC . Gọi V2 là hình nón có đỉnh S và có đường tròn là đường tròn ngoại tiếp tam giác ABC tính tỉ số \(\frac{V1}{V2}\)

15 xét \(\int_0^{\frac{\pi}{2}}sinx.e^{cosx}dx\) nếu đặt t= cosx thì \(\int_0^{\frac{\pi}{2}}sinx.e^{cosx}dx\) bằng

16 xét \(\int_0^2x.4^{x^2}dx\) nếu đặ t =x^2 thì \(\int_0^2x.4^{x^2}dx\) bằng

17 xét \(\int_0^1\left(x+1\right)e^{x^2+2x}\) dx nếu đặt t =\(x^2+2x\) thì \(\int_0^1\left(x+1\right)e^{x^2+2x}dx\) bằng

18 hàm số nào sau đây k phải là mộ nguyên hàm của hàm số y =\(x.e^{x^2}\)

A F(x)= \(\frac{1}{2}e^x+2\) B F(x) =\(\frac{1}{2}\left(e^{x^2}+5\right)\) C F (X) =\(\frac{1}{2}e^{x^2}+C\) D F(x)= \(\frac{1}{2}\left(2-e^{x^2}\right)\)

19 biết F(x) là một nguyên hàm của f(x) = \(sin^4x.cosx\) . Hỏi F(x) có hàm số là

20 cho \(\int_0^8f\left(x\right)dx=24\) . Tính \(\int_0^2f\left(4x\right)dx\)

8
NV
30 tháng 6 2020

18.

\(F\left(x\right)=\int\limits xe^{x^2}dx\)

Đặt \(t=x^2\Rightarrow xdx=\frac{1}{2}dt\)

\(\Rightarrow F\left(x\right)=\frac{1}{2}\int e^tdt=\frac{1}{2}e^t+C=\frac{1}{2}e^{x^2}+C\)

Ủa bạn có ghi nhầm đáp án A ko? Thế nào thì cả A và D đều ko phải nguyên hàm

19.

\(F\left(x\right)=\int sin^4xcosxdx=\int sin^4x.d\left(sinx\right)=\frac{1}{5}sin^5x+C\)

20.

Đặt \(4x=t\Rightarrow dx=\frac{1}{4}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=8\end{matrix}\right.\)

\(\int\limits^2_0f\left(4x\right)dx=\int\limits^8_0\frac{1}{4}f\left(t\right)dt=\frac{1}{4}\int\limits^8_0f\left(x\right)dx=\frac{1}{4}.24=6\)

NV
30 tháng 6 2020

15.

\(t=cosx\Rightarrow sinx.dx=-dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^0_1e^t\left(-dt\right)=\int\limits^1_0e^tdt\)

Nếu cần kết quả tích phân thì \(I=e-1\)

16.

\(t=x^2\Rightarrow x.dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^4_04^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^4_04^tdt\)

17.

\(t=x^2+2x\Rightarrow\left(x+1\right)dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=3\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^3_0e^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^3_0e^tdt\)

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được: a) \(I=2ln\left(x\right)\) b) \(I=ln\left(xe\right)^{ln\left(x\right)}\) c) \(I=ln\left(x^{lnx}e\right)\) d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\) Câu 2: Hàm số nào sau đây không có cự trị: a) \(y=\frac{2+x^2}{x^2-4}\) b) \(y=x^8+x^6+2x^4-4x^2-x+1\) c) \(y=sin\left(cos\left(x\right)\right)\) d) \(y=x^3+2x^2+\sqrt{x}\) Câu 3: Cho đồ thị \(\left(C\right):\)...
Đọc tiếp

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:

a) \(I=2ln\left(x\right)\)

b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)

c) \(I=ln\left(x^{lnx}e\right)\)

d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)

Câu 2: Hàm số nào sau đây không có cự trị:

a) \(y=\frac{2+x^2}{x^2-4}\)

b) \(y=x^8+x^6+2x^4-4x^2-x+1\)

c) \(y=sin\left(cos\left(x\right)\right)\)

d) \(y=x^3+2x^2+\sqrt{x}\)

Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)

b)\(\left[-2;4\right]\)

c) \(\left(4;+\infty\right)\)

d) Không tồn tại giá trị m

Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\)\(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:

a) \(a-b+c+d=0\)

b) \(c=\frac{1}{d}\)

c) \(\left(a-b\right)\left(c+d\right)=0\)

d) \(a+b=35c^2+35d\)

Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0

b) 1

c) 2

d) Đáp án khác

2
NV
5 tháng 2 2020

Câu 1: Là \(ln^2x+lnx\) hay \(lnx^2+lnx\) bạn, hai cái này khác nhau lắm, viết thế kia chẳng hiểu gì cả. Biểu thức logarit nếu viết mũ, thì hoặc là viết thế này \(ln^2x\) hoặc là \(\left(lnx\right)^2\), nếu viết \(ln\left(x\right)^2\) người ta sẽ mặc định hiểu là \(ln\left(x^2\right)\)

Chắc là cái đầu, vậy ta biến đổi được:

\(lnx\left(lnx+1\right)=lnx\left(lnx+lne\right)=lnx.ln\left(x.e\right)=ln\left(x.e\right)^{lnx}\)

Câu 2: đạo hàm 4 cái ra, dễ dàng nhận ra ở đáp án d, với \(x\ge0\Rightarrow f'\left(x\right)=3x^2+4x+\frac{1}{2\sqrt{x}}>0\) luôn đồng biến nên hàm không có cực trị

Câu 3:

Phương trình hoành độ giao điểm:

\(\frac{m-x}{x+1}=2x+m\Leftrightarrow m-x=2x^2+\left(m+2\right)x+m\)

\(\Leftrightarrow2x^2+\left(m+3\right)x=0\)

Phương trình luôn có nghiệm \(x=0\) hay ít nhất 1 trong 2 điểm A; B sẽ trùng gốc tọa độ tức \(OA=0\) hoặc \(OB=0\)

Do đó ko tồn tại m thỏa mãn

NV
5 tháng 2 2020

Câu 4:

\(\left\{{}\begin{matrix}lnx=X\\lny=Y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2X^2+3Y^2=5\\X+4Y=3\end{matrix}\right.\)

\(\Rightarrow2\left(3-4Y\right)^2+3Y^2=5\)

\(\Leftrightarrow35Y^2-48Y+13=0\Rightarrow\left[{}\begin{matrix}Y=1\Rightarrow X=-1\\Y=\frac{13}{35}\Rightarrow X=\frac{53}{35}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}lnx=-1\\lny=1\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(e^{-1};e\right)\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\d=1\end{matrix}\right.\)

Hoặc \(\left\{{}\begin{matrix}lnx=\frac{53}{35}\\lny=\frac{13}{35}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=e^{\frac{53}{35}}=e\sqrt[35]{e^{18}}\\y=e^{\frac{13}{35}}=\sqrt[35]{e^{13}}\end{matrix}\right.\) \(\Rightarrow a=b=35\)

Đáp án b sai

1 số giao điểm của đồ thị hàm số y=\(x^3+3x^2+1\) và trục hoành là A. 3 B. 0 C. 2 D. 1 2 tập nghiệm của bất phương trình \(4^x-5.2^x+4\) >0 là 3 trong ko gian, cho hình chữ nhật ABCD, AB=2a và AC=3a. Khi quay hình chữ nhật ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ. Diện tích xung quanh của hình trụ đó bằng 4 Hinh phẳng giới hạn bởi các đường...
Đọc tiếp

1 số giao điểm của đồ thị hàm số y=\(x^3+3x^2+1\) và trục hoành là

A. 3 B. 0 C. 2 D. 1

2 tập nghiệm của bất phương trình \(4^x-5.2^x+4\) >0 là

3 trong ko gian, cho hình chữ nhật ABCD, AB=2a và AC=3a. Khi quay hình chữ nhật ABCD quanh cạnh AB thì đường gấp khúc BCDA tạo thành một hình trụ. Diện tích xung quanh của hình trụ đó bằng

4 Hinh phẳng giới hạn bởi các đường x=-1,x=2,y=0, y=x^2-2x có diện tích được tính theo công thức là

5 Gọi \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(z^2-2z+10=0\) . Mô đun của phức phức w=i\(z_0\) bằng

6 trong khong gian oxyz, cho điểm A(6;-3;9) có hình chiếu vuông góc trên các trục Ox, Oy,Oz ka2 B,C,D.Gọi G là trọng tâm tam giác BCD . Phương trình của đường thẳng OG là

7 cho cấp sốc nhân (\(u_n\) ) vói \(u_1=\frac{1}{2}\) và công bội q=2. Gía trị của u\(u_{10}\) bằng

A \(2^8\) B \(2^9\) C \(\frac{1}{2^{10}}\) D \(\frac{37}{2}\)

8 nghiệm của pt \(3^{2x^2+1}\) =\(27^x\)

9 thể tích khối lập phương cạnh bằng 5

10 tập xác định của hàm số y=\(5^x\)

A \(R\backslash\left\{0\right\}\) B\(\left(0,+\infty\right)\) C \(\left(-\infty;+\infty\right)\) D[\(0;+\infty\))

11 Diện tích của một mặt cầu bằng \(16\pi\) (\(cm^2\) ) . Bán kính mặt cầu đó là

12 Cho a là số thực dương bất kí, giá trị nào dưới đây có cùng giá trị với log(10a^3)?

A 3loga B 10log\(a^3\) C 1+3loga D 3log(10a)

13 Diện tích xung quanh của hình trụ có diện tích một đấy là S và độ dài đường sinh l bằng ?

14 tiệm cận đúng đồ thị hàm số \(y=\frac{x-2}{x+1}\)

15 bất phương trình \(log_2\left(x^2+2x+1\right)>1\) có tập nghiệm là

16 cho I \(\int_0^2f\left(x\right)dx=3\) . Khi đó J=\(\int_0^2\left[4f\left(x\right)-2x\right]dx\) bằng

17 số phức liên hợp của số phức z=(1-3i).(2+2i) là

5
NV
5 tháng 6 2020

15.

ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)

\(\Leftrightarrow log_2\left(x^2+2x+1\right)>log_22\)

\(\Leftrightarrow x^2+2x+1>2\)

\(\Leftrightarrow x^2+2x-1>0\Rightarrow\left[{}\begin{matrix}x< -1-\sqrt{2}\\x>-1+\sqrt{2}\end{matrix}\right.\)

16.

\(J=4\int\limits^2_0f\left(x\right)dx-\int\limits^2_02xdx=4.3-x^2|^2_0=8\)

17.

\(z=2+2i-6i-6i^2=8-4i\)

\(\Rightarrow\overline{z}=8+4i\)

NV
5 tháng 6 2020

11.

\(S=4\pi R^2\Rightarrow R=\sqrt{\frac{S}{4\pi}}=2\left(cm\right)\)

12.

\(log\left(10a^3\right)=log10+loga^3=1+3loga\)

13.

\(S=\pi R^2\Rightarrow R=\sqrt{\frac{S}{\pi}}\)

\(\Rightarrow S_{xq}=2\pi R.l=2\pi\sqrt{\frac{S}{\pi}}.l=2l.\sqrt{\pi S}\)

14.

\(\lim\limits_{x\rightarrow-1}\frac{x-2}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng

Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\) a) 1 b) 2 c) 4 d) 5 Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\) và \(a^2+b^2=17\). Tính \(a^b+b^{-a}\) a) \(\frac{2}{3}\) b) \(1\) c) \(0\) d) \(\frac{5}{4}\) Câu 3: Cho hàm số...
Đọc tiếp

Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\)

a) 1

b) 2

c) 4

d) 5

Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\)\(a^2+b^2=17\). Tính \(a^b+b^{-a}\)

a) \(\frac{2}{3}\)

b) \(1\)

c) \(0\)

d) \(\frac{5}{4}\)

Câu 3: Cho hàm số \(f\left(x\right)\) xác định trên \(R\). Và thoả mản \(f\left(\sqrt{2x}\right)=f’\left(x\right)\)\(\int\limits^e_1f\left(\sqrt{ln\left(x\right)}\right)dx=3\) . Tính \(\int\limits^{\pi}_02.f\left(cos\left(2x\right)\right)dx\) bằng

a) \(0\)

b) \(2\pi\)

c) \(3\pi\)

d) \(9,425\)

Câu 4: Họ nguyên hàm của hàm số \(\int\frac{3x+a}{x^2+4}dx\) có dạng \(\frac{3}{2}ln\left(x^2+4\right)+arctan\left(\frac{x}{2}\right)+C,C\in R\). Tính \(\int\limits^{\frac{e}{a+2}}_1ln\left(x\right)dx\) bằng

a) 1

b) \(-\frac{ln\left(2^e\right)}{2}+1\)

c) \(1-\frac{ln\left(3^e\right)}{3}\)

d) Đáp án khác

Câu 5: Gọi \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\). Biết \(f”\left(x\right)=-\frac{1}{4x\sqrt{x}},f’\left(2\right)=2+\frac{1}{2\sqrt{2}}\), \(f\left(4\right)=10\)\(F\left(1\right)=1+\frac{2}{3}\). Tính \(\int\limits^1_0F\left(x\right)dx\) bằng

a) \(\frac{5}{3}\)

b) \(\frac{3}{4}\)

c) \(\frac{3}{5}\)

d) \(\frac{4}{3}\)

2
NV
5 tháng 2 2020

Câu 1:

Đặt \(\sqrt{lnx+1}=t\Rightarrow lnx=t^2-1\Rightarrow\frac{dx}{x}=2tdt\)

\(\Rightarrow I=\int3t.2t.dt=6\int t^2dt=2t^3+C\)

\(=2\sqrt{\left(lnx+1\right)^3}+C=2\left(lnx+1\right)\sqrt{lnx+1}+C\)

\(=ln\left(x.e\right)^2\sqrt{ln\left(x.e\right)+0}\Rightarrow a=2;b=0\)

Câu 2:

\(\int\limits^b_ax^{-\frac{1}{2}}dx=2x^{\frac{1}{2}}|^b_a=2\left(\sqrt{b}-\sqrt{a}\right)=2\Rightarrow\sqrt{b}-\sqrt{a}=1\)

Ta có hệ: \(\left\{{}\begin{matrix}\sqrt{b}-\sqrt{a}=1\\a^2+b^2=17\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\) (lưu ý loại cặp nghiệm âm do \(\frac{1}{\sqrt{x}}\) chỉ xác định trên miền (a;b) dương)

NV
5 tháng 2 2020

Câu 4:

\(\int\frac{3x+a}{x^2+4}dx=\frac{3}{2}\int\frac{2x}{x^2+4}dx+a\int\frac{1}{x^2+4}dx\)

\(=\frac{3}{2}ln\left(x^2+4\right)+\frac{a}{2}arctan\left(\frac{x}{2}\right)+C\)

\(\Rightarrow a=2\)

\(\Rightarrow I=\int\limits^{\frac{e}{4}}_1ln\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.lnx|^{\frac{e}{4}}_1-\int\limits^{\frac{e}{4}}_1dx=\frac{e}{4}.ln\left(\frac{e}{4}\right)-\frac{e}{4}+1=-\frac{ln\left(2^e\right)}{2}+1\)

Câu 5:

\(f'\left(x\right)=\int f''\left(x\right)dx=-\frac{1}{4}\int x^{-\frac{3}{2}}dx=\frac{1}{2\sqrt{x}}+C\)

\(f'\left(2\right)=\frac{1}{2\sqrt{2}}+C=2+\frac{1}{2\sqrt{2}}\Rightarrow C=2\)

\(\Rightarrow f'\left(x\right)=\frac{1}{2\sqrt{x}}+2\)

\(\Rightarrow f\left(x\right)=\int f'\left(x\right)dx=\int\left(\frac{1}{2\sqrt{x}}+2\right)dx=\sqrt{x}+2x+C_1\)

\(f\left(4\right)=\sqrt{4}+2.4+C_1=10\Rightarrow C_1=0\)

\(\Rightarrow f\left(x\right)=2x+\sqrt{x}\)

\(\Rightarrow F\left(x\right)=\int f\left(x\right)dx=\int\left(2x+\sqrt{x}\right)dx=x^2+\frac{2}{3}\sqrt{x^3}+C_2\)

\(F\left(1\right)=1+\frac{2}{3}+C_2=1+\frac{2}{3}\Rightarrow C_2=0\)

\(\Rightarrow F\left(x\right)=x^2+\frac{2}{3}\sqrt{x^3}\Rightarrow\int\limits^1_0\left(x^2+\frac{2}{3}\sqrt{x^3}\right)dx=\frac{3}{5}\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

NV
13 tháng 8 2020

5.

\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)

BBT:

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Từ BBT ta có \(y_{min}=y\left(5\right)=7\)

\(\Rightarrow m=7\)

NV
13 tháng 8 2020

3.

\(y'=-2x^2-6x+m\)

Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\Delta'=9+2m\le0\)

\(\Rightarrow m\le-\frac{9}{2}\)

4.

\(y'=x^2-mx-2m-3\)

Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)

\(\Leftrightarrow x^2-mx-2m-3\ge0\)

\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)

\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)

Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)

\(g\left(-1\right)=-2\Rightarrow m\le-2\)

2 tháng 4 2017

a) f(x) = 2x3 – 3x2 – 12x + 1 ⇒ f’(x) = 6x2 – 6x – 12

f’(x) = 0 ⇔ x ∈ {-1, 2}

So sánh các giá trị:

f(x) = -3; f(-1) = 8;

f(2) = -19, f(52)=−332f(52)=−332

Suy ra:

maxx∈[−2,52]f(x)=f(−1)=8minx∈[−2,52]f(x)=f(2)=−19maxx∈[−2,52]⁡f(x)=f(−1)=8minx∈[−2,52]⁡f(x)=f(2)=−19

b) f(x) = x2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e] nên f(x) đồng biến.

Do đó:

maxx∈[1,e]f(x)=f(e)=e2minx∈[1,e]f(x)=f(1)=0maxx∈[1,e]⁡f(x)=f(e)=e2minx∈[1,e]⁡f(x)=f(1)=0

c) f(x) = f(x) = xe-x ⇒ f’(x)= e-x – xe-x = (1 – x)e-x nên:

f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1) và f’(x) < 0, ∀x ∈ (1, +∞)

nên:

maxx∈[0,+∞)f(x)=f(1)=1emaxx∈[0,+∞)⁡f(x)=f(1)=1e

Ngoài ra f(x) = xe-x > 0, ∀ x ∈ (0, +∞) và f(0) = 0 suy ra

maxx∈[0,+∞)f(x)=f(0)=0maxx∈[0,+∞)⁡f(x)=f(0)=0

d) f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x

f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π

x∈{−π+k2π;π3+k2π3}x∈{−π+k2π;π3+k2π3}

Trong khoảng [0,3π2][0,3π2] , phương trình f’(x) = 0 chỉ có hai nghiệm là x1=π3;x2=πx1=π3;x2=π

So sánh bốn giá trị : f(0) = 0; f(π3)=3√32;f(π)=0;f(3π2)=−2f(π3)=332;f(π)=0;f(3π2)=−2

Suy ra:

maxx∈[0,3π2]f(x)=f(π3)=3√32minx∈[0,3π2]f(x)=f(3π2)=−2



1 một cấp số hạng đầu u1=3 và công bội q=2 . Tổng 7 số hạng đầu tiên của cấp số nhân là 2 cho hàm số f(x) có \(f^,\) (x)=\(x^{2019}.\left(x-1\right)^{2019}.\left(x+1\right),\forall\in R\) . Hàm số đã cho có bao nhiêu cực trị 3 số giao điểm dg cong \(y=x^3-2x^2+x-1\) và đường thẳng \(y=1-2x\) 4 Thể tích khối hộp chữ nhật có ba kích thước lần lượt bằng 3,4,5 bằng 5 cho a,b >0 , nếu \(log_8a+log_4b^2=5\)...
Đọc tiếp

1 một cấp số hạng đầu u1=3 và công bội q=2 . Tổng 7 số hạng đầu tiên của cấp số nhân là

2 cho hàm số f(x) có \(f^,\) (x)=\(x^{2019}.\left(x-1\right)^{2019}.\left(x+1\right),\forall\in R\) . Hàm số đã cho có bao nhiêu cực trị

3 số giao điểm dg cong \(y=x^3-2x^2+x-1\) và đường thẳng \(y=1-2x\)

4 Thể tích khối hộp chữ nhật có ba kích thước lần lượt bằng 3,4,5 bằng

5 cho a,b >0 , nếu \(log_8a+log_4b^2=5\)\(log_4a^2+log_8b=7\) hì giá trị của \(\frac{a}{b}\) bằng

6 tập nghiệm của bất pt \(log_{\frac{1}{5}}^2x-2log_{\frac{1}{5}}x-3>0\)

7 thể tích khối cầu ngoại tiếp bát diện đều có cạnh bằng \(a\sqrt{2}\)

8 mệnh đề nào sau đây sau

A log a < logb =>0<a<b

B lnx<1 => 0<x<1

C lnx>0 => x>1

D log a> logb => a>b>0

9 cho số phức z thỏa mãn \(\overline{z}\) +2i-5=0 . Mô đun của z bằng

10 trong ko gian với hệ trục tọa độ OXYZ cho M (1;-2;1), N (0;1;3) . Phương trình đường thẳng đi qa M,N là

3
NV
9 tháng 7 2020

7.

\(V=\frac{\left(a\sqrt{2}\right)^3\pi.\sqrt{2}}{3}=\frac{4\pi a^3}{3}\)

8.

Mệnh đề B sai

Mệnh đề đúng là: \(lnx< 1\Rightarrow0< x< e\)

9.

\(\overline{z}=5-2i\Rightarrow z=5+2i\Rightarrow\left|z\right|=\sqrt{5^2+2^2}=\sqrt{29}\)

10.

\(\overrightarrow{NM}=\left(1;-3;-2\right)\) nên đường thẳng MN nhận \(\left(1;-3;-2\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=t\\y=1-3t\\z=3-2t\end{matrix}\right.\)

NV
9 tháng 7 2020

4.

\(V=3.4.5=60\)

5.

\(\left\{{}\begin{matrix}log_8a+2log_4b=5\\log_8b+2log_4a=7\end{matrix}\right.\)

\(\Rightarrow log_8a-log_8b-2\left(log_4a-log_4b\right)=-2\)

\(\Leftrightarrow log_8\frac{a}{b}-2log_4\frac{a}{b}=-2\)

\(\Leftrightarrow\frac{1}{3}log_2\frac{a}{b}-log_2\frac{a}{b}=-2\)

\(\Leftrightarrow-\frac{2}{3}log_2\frac{a}{b}=-2\)

\(\Leftrightarrow log_2\frac{a}{b}=3\)

\(\Rightarrow\frac{a}{b}=8\)

6.

\(log_{\frac{1}{5}}x=t\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}log_{\frac{1}{5}}x=-1\\log_{\frac{1}{5}}x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{125}\end{matrix}\right.\)