Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh lam bai nay roi nhung minh ko co nha nen minh ko nho
\(\frac{2x+1}{3}=\frac{5}{2}\)
\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)
2x= 15/2 - 1 = 13/2
x = 13/2 : 2
x = 13/4
b) 2x + 2x+1 + 2x+2 + 2x+3 = 480
2x.(1+ 2 +22 + 23) = 480
2x . 15 = 480
2x = 480 : 15 = 32
2x = 25 => x = 5
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)
\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)
\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)
< = > 3x= -6 => x = -2
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)
\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)
\(6^{x-1}.217=6^{15}.217\)
\(6^{x-1}=6^{15}\)
\(x-1=15\)
\(x=16\)
b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)
\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)
\(3^x=3^{13}\)
\(x=13\)
\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)
=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)
=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)
=> \(3^x.3^4-4.3^x=-386339074,3\)
=> \(3^x.\left(3^4-4\right)=-386339074,3\)
=> \(3^x.77=-386339074,3\)
=> \(3^x=-386339074,3:77\)
=> \(3^x=-5017390,575\)
=> x = ... chắc tự ngồi tính đc
a) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
b)\(\left(2x-3\right)^3=343\)
\(\left(2x-3\right)^3=7^3\)
\(2x-3=7\)
\(2x=7+3\)
\(2x=10\)
\(x=10:2\)
\(x=5\)
a) Ta có: \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
<=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
<=> \(x=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy x=5/6
b)\(\left(2x-3\right)^3=343\)
<=>\(2x-3=\sqrt[3]{343}=7\)
<=> 2x=10 <=> x=5
c) \(\left(\frac{1}{3}\right)^{2x}+1=\frac{1}{7}\)
<=>\(\left(\frac{1}{3}\right)^{2x}=\frac{-6}{7}\)
<=> \(\left(\frac{1}{3^x}\right)^2=-\frac{6}{7}\)(vô lí vì \(\left(\frac{1}{3^x}\right)^2\ge0\))
Vậy ko tìm được x thỏa mãn.
d)\(\left(2x-3\right)^2=9\)
=>\(\left[\begin{array}{nghiempt}2x-3=3\\2x-3=-3\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=3\\x=0\end{array}\right.\)
Vậy x=3 hoặc x=0.
e) \(\left(x-3\right)^6=\left(x-3\right)^7\)
<=> \(\left(x-3\right)^7-\left(x-3\right)^6=0\)
<=> \(\left(x-3\right)^6\left(x-3-1\right)=0\)
<=>\(\left(x-3\right)^6\left(x-4\right)=0\)
<=> \(\left[\begin{array}{nghiempt}x-3=0\\x-4=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=3\\x=4\end{array}\right.\)
Vậy x \(\in\left\{3;4\right\}\)
a: \(=\dfrac{17}{4}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}-\dfrac{5}{2}+\dfrac{7}{2}\)
\(=\dfrac{35}{8}+\dfrac{8}{8}-\dfrac{37}{100}-\dfrac{128}{100}\)
\(=\dfrac{43}{8}-\dfrac{165}{100}=\dfrac{149}{40}\)
b: \(=\left(\dfrac{22\cdot26+3\cdot10-65}{130}\right):\left(\dfrac{4\cdot22-2\cdot26+3\cdot143}{286}\right)\)
\(=\dfrac{537}{130}\cdot\dfrac{286}{465}=\dfrac{1969}{775}\)
\(\frac{12+x}{43-x}=\frac{2}{3}\)\(\Rightarrow3\left(12+x\right)=2\left(43-x\right)\)
\(\Rightarrow36+3x=86-2x\)
\(\Rightarrow36+3x-86+2x=0\)
\(\Rightarrow5x=50\)
\(\Rightarrow x=10\)
\(\frac{12+x}{43-x}=\frac{2}{3}\)
\(\frac{\left(12+x\right)\times3}{\left(43-x\right)\times3}=\frac{2\times\left(43-x\right)}{3\times\left(43-x\right)}\)
\(\left(12+x\right)\times3=2\times\left(43-x\right)\)
\(36+x\times3=86-2\times x\)
\(x\times3+2\times x=86-36\)
\(x\times5=50\)
\(x=50\div5\)
\(x=10\)
x | 7 | 9 | |||
x2 | 49 | 81 | |||
x2-49 | - | 0 | + | + | + |
x2-81 | - | - | - | 0 | + |
A | + | 0 | - | 0 | + |
dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9
b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)
=1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)
(2015 số 1)
=1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))
=\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)
=2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))
a.\(\frac{1}{6}.6^x+6^x.36=6^{15}\left(1+6^3\right)\)
\(6^x.\frac{217}{6}=6^{15}.217\)
\(6^x=6^{16}\)
\(x=16\)
sao bạn ko làm câu b) lun