K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Ta có: 

\(2n+3⋮3n+2\)

\(\Rightarrow\) \(6n+9⋮6n+4\)

\(\Rightarrow\) \(6n+9-6n-4⋮6n+4\)

\(\Rightarrow\) \(5⋮6n+4\)

\(\Rightarrow\) \(6n+4\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow\) \(6n\in\left\{1\right\}\)

\(\Rightarrow\) \(n=\frac{1}{6}\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

làm hộ?????

10 tháng 3 2020

3)

3n+7\(⋮2n+1\)

vì \(3n+7⋮3n+7\)

=>\(2\left(3n+7\right)⋮3n+7\)

=> 6n+7\(⋮3n+7\)

vì \(2n+1⋮2n+1\)

\(\Rightarrow3\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+1⋮2n+1\)

\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)

\(\Rightarrow6⋮2n+1\)

đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé

9 tháng 1 2018

3n+2 chia hết cho n-1

ta có: 3n+2=3n-3+5=3(n-1)+5

Vì n-1 chia hết cho n-1

suy ra 5 chia hết cho n-1

suy ra n-1 thuộc bội của 5 =1,-1,5,-5

Rồi bạn tự giải ra từng trường hợp nhé !

a/ \(n+2⋮n+1\)

\(\left(n+1\right)+1⋮n+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=-2\end{cases}}}\)

b/ \(3n+2⋮n-1\)

\(3n-3+5⋮n-1\)

\(3\left(n-1\right)+5⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\orbr{\begin{cases}n-1=1\\n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=0\end{cases}}}\)

\(\orbr{\begin{cases}n-1=5\\n-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}n=6\\n=-4\end{cases}}}\)

Vậy \(n\in\left\{2;0;6;-4\right\}\)

c/ 2n - 1 là ước của 3n + 2

\(\Rightarrow3n+2⋮2n-1\)

\(\Rightarrow6n+4⋮2n-1\)

\(\Rightarrow6n-3+7⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+7⋮2n-1\)

Vì \(3\left(2n-1\right)⋮2n-1\)

\(\Rightarrow7⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\orbr{\begin{cases}2n-1=1\\2n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2n=2\\2n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=1\\n=0\end{cases}}}\)

\(\orbr{\begin{cases}2n-1=7\\2n-1=-7\end{cases}\Rightarrow\orbr{\begin{cases}2n=8\\2n=-6\end{cases}\Rightarrow}\orbr{\begin{cases}n=4\\n=-3\end{cases}}}\)

Vậy \(n\in\left\{1;0;4;-3\right\}\)

hok tốt!!

13 tháng 7 2018

a, A = 3n-1 = 3n-6+5 = 3(n-2)+5

Ta có 3(n-2) chia hết cho (n-2) => để A chia hết cho n-2 => 5 chia hết cho (n-2)

=> (n-2) thuộc ước 5 { 5,-5,1,-1}

Với n-2 = 5 => n=7

n-2= -5 => n= -3

n-2= 1 => n= 3

n-2= -1 => n= 1

13 tháng 7 2018

C =3n+2 = 3n-6+8 = 3(n-2)+8

3(n-2) chia hết cho n-2 => Để C chia hết cho n-2 => (n-2) thuộc ước của 8 ={ 1,-1,2,-2,4,-4,8,-8}

Tưong tự như A trên các nghiệm n lần lượt là :

{3,1,4,0,6,-2,10,-6}

1 tháng 1 2020

a) Vì 1-2n là Ư(3n+2)

\(\Rightarrow\)3n+2 \(⋮\) 1-2n

\(\Rightarrow\)-3n-2 \(⋮\) 2n-1

\(\Rightarrow\)-2(-3n-2) \(⋮\) 2n-1

\(\Rightarrow\)6n+4 \(⋮\)2n-1

\(\Rightarrow\)3(2n-1)+7 \(⋮\)2n-1

\(\Rightarrow\)\(⋮\) 2n-1

\(\Rightarrow\)2n-1 \(\in\)Ư(7)

Ta có:

Ư(7) \(\in\){\(\pm\)1; \(\pm\)7}

Lập bảng:

2n-1-11-77
n01-34

Vậy n \(\in\){0;1;-3;4}

b) 5n+1 \(⋮\)2n-3

\(\Leftrightarrow\)2(5n+1) \(⋮\)2n-3

\(\Leftrightarrow\)10n+2 \(⋮\)2n-3

\(\Leftrightarrow\)5(2n-3)+17 \(⋮\)2n-3

\(\Leftrightarrow\)17 \(⋮\)2n-3

\(\Rightarrow\)2n-3 \(\in\)Ư(17)

Ta có:

Ư(17)\(\in\){\(\pm\)1;\(\pm\)17}

Lập bảng:

2n-3-11-1717
n12-710

Vậy n \(\in\){1;2;-7;10}

2 tháng 2 2017

Ta có 3n+ 2 chia hết cho 2n + 1 khi và chỉ khi 2.(3n+2) = 6n + 4 = 3.(2n+ 1) + 1 chia hết cho 2 n+1

<=> 1 chia hết cho 2n+1

Sau đó bạn tìm n 

2 tháng 2 2017

3n + 2 chia hết cho 2n + 1

=> 2 (3n + 2) chia hết cho 2n + 1

     3 (2n + 1) chia hết cho 2n + 1

=> 6n + 4 chia hết cho 2n + 1

     6n + 3 chia hết cho 2n + 1

=> 6n + 4 - (6n + 3) chia hết cho 2n + 1

     6n + 4 - 6n - 3 chia hết cho 2n + 1

               1 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư (1) = {1 ; -1}

  • 2n + 1 = 1 => 2n = 1 - 1 = 0 => n = 0 : 2 = 0
  • 2n + 1 = -1 => 2n = (-1) - 1 = -2 => n = (-2) : 2 = -1

Vậy n thuộc {0 ; -1}