Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
\((a^2+2c^2)(1+2)\geq (a+2c)^2\)
\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)
\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)
Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)
Cộng theo vế các BĐT trên thu được:
\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=3$
Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.
Áp dụng BĐT AM-GM ta có:
\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)
\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)
\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)
Cộng theo vế:
\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)
\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)
Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)
Do 1/b+1/c=3/4-1/a suy ra \(\sum\) (1a/)=3/4
Ta có \(\dfrac{\sqrt{b^2+bc+c^2}}{a^2}\)= \(\dfrac{\sqrt{\left(b+c\right)^2-bc}}{a^2}\ge\dfrac{\sqrt{\left(b+c\right)^2-\dfrac{\left(b+c\right)^2}{4}}}{a^2}=\dfrac{\sqrt{3}\left(b+c\right)}{2a^2}\)
Tương tự ta được:
P\(\ge\) \(\sqrt{3}\) \(\left(\sum\dfrac{b+c}{a^2}\right)\) \(\ge\) \(\sqrt{3}\) (1/a+1/b+1/c) \(\ge\dfrac{3\sqrt{3}}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\) a=b=c=4
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)
Cộng vế với vế:
\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)
Bài 1:
Ta có: \(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\dfrac{b}{\sqrt{1+b^2}}=\dfrac{b}{\sqrt{ab+bc+ca+b^2}}=\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)
\(\dfrac{c}{\sqrt{1+c^2}}=\dfrac{c}{\sqrt{ab+bc+ca+c^2}}=\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Vậy \(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(P\le a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)+c\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)=\dfrac{9}{4}\)
Bài 2:
Ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}=\dfrac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\dfrac{2+\dfrac{4+\left(1+x^2\right)}{2}}{2x}=\dfrac{9+x^2}{4x}\)
Tương tự ta cũng có:
\(\dfrac{1+\sqrt{1+y^2}}{y}\le\dfrac{9+y^2}{4y};\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+z^2}{4z}\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+x^2}{4x}+\dfrac{9+y^2}{4y}+\dfrac{9+z^2}{4z}\)
\(=\dfrac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\dfrac{9\cdot\dfrac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
Bài 1:
\(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Sau đó côsi
Tự làm nốt nhé, ra 3/2 đấy. Em học lớp 8 nên cách giải chỉ thế thôi. Câu 2 em chưa làm được
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{3}}=\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\)
Tức cần chứng minh \(\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\ge1\)
\(\Leftrightarrow3\left(a+b+c\right)\ge3+ab+bc+ca\)
\(\Leftrightarrow9\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge\left(3\left(a^2+b^2+c^2\right)+ab+bc+ca\right)^2\)
Đặt \(a^2+b^2+c^2=k\left(ab+bc+ca\right)\left(k\ge1\right)\) và ta cần cm:
\(9(k+2)k\geq(3k+1)^2\)\(\Leftrightarrow12k-1\ge9\) *đúng với \(k\ge 1\) :|*
\(BĐT\Leftrightarrow\sum\dfrac{2bc}{1+a^2}\le\dfrac{3}{2}\Leftrightarrow\sum\dfrac{-2bc}{2a^2+b^2+c^2}\ge-\dfrac{3}{2}\)
\(\Leftrightarrow\sum\dfrac{2a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}\ge\dfrac{3}{2}\)
ÁP dụng BĐT cauchy-schwarz:
\(\sum\dfrac{2a^2}{2a^2+b^2+c^2}\ge\dfrac{2\left(a+b+c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)
và \(\sum\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}=\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(a-c\right)^2}{2b^2+a^2+c^2}\ge\dfrac{4\left(a-c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a-c\right)^2}{a^2+b^2+c^2}\)
( Lưu ý : \(\left(c-a\right)^2=\left(a-c\right)^2\)) (1)
Do vậy cần chứng minh \(\dfrac{\left(a+b+c\right)^2+2\left(a-c\right)^2}{2\left(a^2+b^2+c^2\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)^2+4\left(a-c\right)^2\ge6\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow ab+bc-ac-b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\) (*)
(*) không phải luôn đúng, tuy nhiên ta có thể ép cho nó đúng .
bằng cách đáng giá tương tự BĐT (1) :
\(\left\{{}\begin{matrix}\dfrac{\left(b-a\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(b-a\right)^2}{a^2+b^2+c^2}\\\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(c-b\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(c-b\right)^2}{a^2+b^2+c^2}\end{matrix}\right.\)
ta thu được BĐT cần chứng minh tương đương \(\left\{{}\begin{matrix}\left(b-c\right)\left(c-a\right)\ge0\left(3\right)\\\left(c-a\right)\left(a-b\right)\ge0\left(4\right)\end{matrix}\right.\)
Dễ thấy \(\left(a-b\right)\left(b-c\right).\left(b-c\right)\left(c-a\right).\left(c-a\right)\left(a-b\right)=\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\ge0\)
tích của chúng là 1 số không âm nên có ít nhất 1 số không âm .Chứng tỏ có ít nhất 1 BĐT đúng
Do đó ta có đpcm
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lời giải:
Ta có:
\(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=\frac{(ab)^2+(bc)^2+(ca)^2}{abc}\)
Xét tử số:
\(\text{TS}=(ab)^2+(bc)^2+(ca)^2\)
\(\Rightarrow \text{TS}^2=a^4b^4+b^4c^4+c^4a^4+2(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)\)
Áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix} a^4b^4+b^4c^4\geq 2a^2b^4c^2\\ b^4c^4+c^4a^4\geq 2a^2b^2c^4\\ c^4a^4+a^4b^4\geq 2a^4b^2c^2\end{matrix}\right.\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)
Do đó:
\(\text{TS}^2\geq 3(a^2b^4c^2+a^2b^2c^4+a^4b^2c^2)=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)
\(\Rightarrow \text{TS}\geq \sqrt{3}abc\)
\(\Rightarrow P\geq \sqrt{3}\)
Vậy \(P_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Cách khác:
\(P^2=\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{c^2a^2}{b^2}+2\left(a^2+b^2+c^2\right)\)
Áp dụng BĐT Cauchy:
\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}\ge2b^2\)
CMTT\(\Rightarrow\)\(\dfrac{a^2b^2}{c^2}+\dfrac{b^2c^2}{a^2}+\dfrac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)
\(\Rightarrow P^2\ge3\Rightarrow P\ge\sqrt{3}\)
Dấu"=" xảy ra\(\Leftrightarrow\)a=b=c=\(\dfrac{1}{\sqrt{3}}\)
$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
còn câu 1 nữa Ace Legona