\(A=x^2+6x+1\)

b) \(2x^2+10x-5\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

a) \(A=x^2+6x+1=\left(x^2+2\cdot x\cdot3+3^2\right)-8\)

\(=\left(x+3\right)^2-8\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> \(\left(x+3\right)^2-8\ge-8\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3

Vậy Amin = -8 khi x = -3

b) \(2x^2+10x-5=2\left(x^2+5x-\frac{5}{2}\right)\)

\(=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{35}{2}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\)

Vì (x + 5/2)2 \(\ge0\forall x\)

=> \(2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\ge-\frac{35}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 5/2)2 = 0 => x = -5/2

Vậy Bmin = -35/2 khi x = -5/2

c) \(x^2-5x=\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\)

Vì (x - 5/2)2 \(\ge\)0 với mọi x

=> \(\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu " = " xảy ra khi và chỉ khi (x - 5/2)2 = 0 => x = 5/2

Vậy Cmin = -25/4 khi x = 5/2

26 tháng 7 2018

\(A=-x^2+6x+2=-\left(x-3\right)^2+11\le11\)

Vậy Max  \(A=11\)khi  \(x=3\)

\(B=-x^2-4x=-\left(x+2\right)^2+4\le4\)

Vậy Max \(B=4\)khi  \(x=-2\)

\(C=-2x^2+6x+3=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\)

Vậy Max \(C=\frac{15}{2}\)khi  \(x=\frac{3}{2}\)

Giang sai rồi nhá , nó ko chỉ có max đâu , nó có cả Min nữa đấy

8 tháng 7 2016

mọi người giúp mình với

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

19 tháng 7 2016

\(a,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) (x khác -3; khác 0)

\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x}{2x.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x-x+6}{2x.\left(x+3\right)}=\frac{2x+6}{x.\left(2x+6\right)}=\frac{1}{x}\)

 

19 tháng 7 2016

\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) (x khác 0 , khác 1/2 khác -1/2 )

\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\left(\frac{4x^2+4x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^2-4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5.\left(2x-1\right)}{4x}=\frac{10}{2x+1}\)

7 tháng 10 2018

a) \(A=5x^2-6x-1\)

   \(\Rightarrow A=5\left(x^2-\frac{6}{5}x-\frac{1}{5}\right)\)

  \(\Rightarrow A=5\left(x^2-2\cdot x\cdot\frac{6}{10}+\frac{36}{100}-\frac{14}{25}\right)\)

  \(\Rightarrow A=5\left[\left(x-\frac{6}{10}\right)^2-\frac{14}{25}\right]\)

  \(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\)

  Vì \(\left(x-\frac{6}{10}\right)^2\ge0\forall x\)\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\ge-\frac{14}{5}\forall x\)

\(A=-\frac{14}{5}\Leftrightarrow\left(x-\frac{6}{10}\right)^2=0\Leftrightarrow x=\frac{6}{10}\)

Vậy \(MinA=-\frac{14}{5}\Leftrightarrow x=\frac{6}{10}\)

   

7 tháng 10 2018

\(x^2+y^2+2xy+4x+4y\)

\(=\left(x+y\right)^2+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+4\right)\)

5 tháng 11 2017

1.

a. x2 - 2x + 1 = 0

x2 - 2x*1 + 12 = 0

(x-1)2 = 0

............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)

1, Tìm x biết:

a, x2 - 2x +1 = 0

(x-1)2 = 0

x-1 = 0

x = 1. Vậy ...

b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30

25x2 +10x + 1 - (25x2 -9) = 30

25x2 +10x + 1 - 25x2 +9 = 30

10x + 10 =30

10(x+1) = 30

x+1 =3

x = 2. vậy ...

c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5

(x3 - 1) - x(x2 -4) = 5

x3 - 1 - x3 + 4x = 5

4x - 1 = 5

4x = 6

x = \(\dfrac{3}{2}\) .vậy ...

d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15

x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15

x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15

24x + 25 = 15

24x = -10

x = \(\dfrac{-5}{12}\) vậy ...