\(\frac{3x^2-x+8}{x^2+3}\)

 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2020

1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)

Dấu "=" xảy ra <=> a = 4 

Vậy min A = 17/4 tại a = 4

2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)

Dấu "=" xảy ra <=> x = 2

Vậy min B = 8 tại x = 2

3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)

Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)

Dấu "=" xảy ra <=> x = 1/2  thỏa mãn

Vậy min C = 7 đạt tại x = 1/2

21 tháng 6 2020

https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này

10 tháng 7 2020

Áp dụng BĐT Cauchy cho 2 số không âm ta có : 

\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi và chỉ khi \(a=4\)

Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

27 tháng 11 2021
Tao khong hieu
27 tháng 11 2021

a)đkxđ: \(x+1\ne0\Leftrightarrow x\ne-1\)

 \(B=\frac{x^2-x+1}{x^2+2x+1}=\frac{x^2+2x+1-3x}{x^2+2x+1}=1-\frac{3x}{\left(x+1\right)^2}=1-\frac{3\left(x+1\right)-3}{\left(x+1\right)^2}\)

\(B=1-\frac{3}{x+1}+\frac{3}{\left(x+1\right)^2}\)

Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow B=3a^2-3a+1=3\left(a^2-a+\frac{1}{3}\right)=3\left(a^2-2a.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow B\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}\Leftrightarrow x+1=2\Leftrightarrow x=1\left(nhận\right)\)

Vậy GTNN của B là \(\frac{1}{4}\)khi \(x=1\)

b) đkxđ \(x-1\ne0\Leftrightarrow x\ne1\)\(E=\frac{3x^2-8x+6}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)-2x+3}{x^2-2x+1}=3-\frac{2x-3}{\left(x-1\right)^2}=3-\frac{2\left(x-1\right)-1}{\left(x-1\right)^2}\)

\(=3-\frac{2}{x-1}+\frac{1}{\left(x-1\right)^2}\)

Đặt \(\frac{1}{x-1}=b\)\(\Rightarrow E=b^2-2b+3=b^2-2b+1+2=\left(b-1\right)^2+2\)

Vì \(\left(b-1\right)^2\ge0\Leftrightarrow B\ge2\)

Dấu "=" xảy ra khi \(b-1=0\Leftrightarrow b=1\Leftrightarrow\frac{1}{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(nhận\right)\)

Vậy GTNN của B là 2 khi x = 2

29 tháng 8 2017

bài 1 dễ òy tự lm mà nâng cao kiến thức ;))

Bài 2 ) làm mẫu ý b ; a vận dụng làm tương tự

Gọi \(A=\frac{x}{\left(x+100\right)^2}\)Ta có : \(A=\frac{x}{x^2+200x+10000}\)

\(\Leftrightarrow Ax^2+200Ax+10000A=x\)

\(\Leftrightarrow Ax^2+200Ax-x+10000A=0\)

\(\Leftrightarrow Ax^2+\left(200A-1\right)x+10000A=0\)

Để pt trên có nghiệm thì \(\Delta=\left(200A-1\right)^2-4.A.10000A\ge0\)

\(\Leftrightarrow40000A^2-400A+1-40000A^2\ge0\)

\(\Leftrightarrow-400A+1\ge0\Rightarrow A\le\frac{1}{400}\) có max là \(\frac{1}{400}\)

Dấu "=" xảy ra \(\Leftrightarrow x=100\)

Vậy \(A_{max}=\frac{1}{400}\) tại \(x=100\)

29 tháng 8 2017

Alo, cho hỏi cái bạn. cái tam giác là gì thế??? Giải giúp luôn bài 1 đi =((

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

18 tháng 8 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)

Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3