K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2

13 tháng 2 2020

a) ý bạn là x=2 à

Với x=2 

pt <=>\(2m^2-2=m^2+3m+8\Leftrightarrow m^2-3m-10=0\Leftrightarrow\left(m-5m\right)+\left(2m-10\right)=0\)

\(\Leftrightarrow\left(m+2\right)\left(m-5\right)=0\Leftrightarrow\orbr{\begin{cases}m+2=0\\m-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=-2\\m=5\end{cases}}\)

Vậy \(m\in\left\{5;-2\right\}\)thì pt có nghiệm x=2

b)c) pt<=>\(m^2x-4x=m^2+3m+2\Leftrightarrow x\left(m^2-4\right)=\left(m^2+2m\right)+\left(m+2\right)\)

\(\Leftrightarrow x\left(m-2\right)\left(m+2\right)=\left(m+2\right)\left(m+1\right)\)

Với \(m\ne-2\)pt <=> 0x=0 <=> pt có vô số nghiệm

Với   \(m\ne2\)pt <=> 0x=12 <=> pt vô nghiệm

Với \(m\ne\pm2\)pt có nghiệm duy nhất \(x=\frac{m+1}{m-2}\)

Bài làm

m2x - 4x = 5 - 3mx

<=> m2x - 4x + 3mx = 5

<=> x( m2 - 4 + 3m ) = 5

Để phương trình m2x - 4x = 5 - 3mx vô nghiệm thì:

m2 - 4 + 3m = 0

<=> m2 - 3 - 1 + 3m = 0

<=> ( m2 - 1 ) - 3( 1 - m ) = 0

<=> ( m - 1 )( m + 1 ) - 3( 1 - m ) = 0

<=> ( 1 - m )( -m - 1 ) - 3( 1 - m ) = 0

<=> ( 1 - m )( -m - 1 - 3 ) = 0

<=> ( 1 - m )( -m - 4 ) = 0

<=> \(\orbr{\begin{cases}1-m=0\\-m-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\-m=4\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=-4\end{cases}}}}\)

Vậy để thương trình trên vô nghiệm thì m = 1 hoặc m = -4

# Học tốt #