Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
.............................................
Cộng với vế 99 của BĐT trên, ta được:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99.\frac{1}{10}=\frac{99}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}=\frac{1}{10}=\frac{100}{10}=10\)
Wrecking Ball đã làm đúng
to ra kết quả giống cậu : Wrecking Ball
là đáp án đúng
tk nha ( chúc bn học gioi )
Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}\)\(=\sqrt{1.2}+\sqrt{2.3}+\sqrt{3.4}+...+\sqrt{10.11}\)
\(< \frac{1+2}{2}+\frac{2+3}{2}+\frac{3+4}{2}+...+\frac{10+11}{2}\)\(=\frac{1}{2}\left[\left(1+2+3+...+10\right)+\left(2+3+4+...+11\right)\right]\)\(=\frac{1}{2}\left(\frac{11.10}{2}+\frac{13.10}{2}\right)=\frac{1}{2}\left(55+65\right)=60\)
Vậy \(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}< 60.\)
2) so sánh
Ta có \(\sqrt{17}\)>\(\sqrt{16}\)=4
\(\sqrt{26}\)>\(\sqrt{25}\)=5
=> \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
=>\(\sqrt{17}+\sqrt{25}+1>5+4+1=10\)
Mà \(\sqrt{99}< \sqrt{100}=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
mk giúp bạn được câu 2 thôi
Xin lỗi nhá
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
Dinh Nguyen Ha Linh bn vào câu hỏi của tôi rùi ấn sửa nội dung cho đúng đi nhé
Ta có : \(\left(x-5\right)^4+\frac{14}{17}=\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\)
Vì : \(\left[\left(x-5\right)^2\right]^2\ge0\forall x\)
Nên : \(\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\ge\frac{14}{17}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{14}{17}\) khi x = 5
b) Vì : \(\left(\frac{3}{7}-14x\right)^2\ge0\forall x\)
Nên : \(\left(\frac{3}{7}-14x\right)^2-\frac{214}{979}\ge-\frac{214}{979}\forall x\)
Vậy GTNN của biểu thức là : \(-\frac{214}{979}\) khi \(\frac{3}{7}-14x=0\) \(\Rightarrow14x=\frac{3}{7}\) \(\Rightarrow x=\frac{3}{7}.\frac{1}{14}=\frac{3}{98}\)