K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

a) Ta có: Q = 2x2 - 6x = 2x2 - 6x + 9/2 - 9/2 = 2(x2 - 3x + 9/4) - 9/2 = 2(x - 3/2)2 - 9/2

Ta luôn có : (x - 3/2)2 \(\ge\)\(\forall\)x --> 2(x - 3/2)2 \(\ge\)\(\forall\)x

     => 2(x - 3/2)2 - 9/2 \(\ge\)-9/2 \(\forall\)x

hay Q \(\ge\)-9/2 \(\forall\)x

Dấu "=" xảy ra <=> (x - 3/2)2 = 0 <=> x - 3/2 = 0 <=> x = 3/2

Vậy Qmin = -9/2 tại x = 3/2

22 tháng 6 2019

b) Ta có:

M = x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4 = (x - 1/2)2 + (y + 3)2 + 3/4

Ta luôn có: (x - 1/2)2 \(\ge\)\(\forall\)x

                (y + 3)2 \(\ge\) 0 \(\forall\)y

 => (x - 1/2)2 + (y + 3)2 + 3/4 \(\ge\) 3/4 \(\forall\)x,y 

hay M \(\ge\)3/4 \(\forall\)x , y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Vậy Mmin = 3/4 tại x = 1/2 và y = -3

11 tháng 9 2020

Câu 1.

P = x2 - 2x + 5 

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinP = 4 <=> x = 1

Q = 2x2 - 6x

= 2( x2 - 3x + 9/4 ) - 9/2

= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinQ = -9/2 <=> x = 3/2

M = x2 + y2 - x + 6y + 10

= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4

= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

=> MinM = 3/4 <=> x = 1/2 ; y = -3

Câu 2.

A = 4x - x2 + 3

= -( x2 - 4x + 4 ) + 7

= -( x - 2 )2 + 7 ≤ 7 ∀ x

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxA = 7 <=> x = 2

B = x - x2

= -( x2 - x + 1/4 ) + 1/4

= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/4 <=> x = 1/2

N = 2x - 2x2

= -2( x2 - x + 1/4 ) + 1/2

= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/2 <=> x = 1/2

11 tháng 9 2020

Làm gần xong thì lỡ bấm out ra TT

\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy minP = 4 <=> x = 1

\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

Vậy minQ = - 9/2 <=> x = 3/2

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Vậy minM = 3/4 <=> x = 1/2 và y = - 3

19 tháng 10 2017

a)\(A=\left(x-5\right)^2\ge0\)

\(\Rightarrow Min=0\)dấu \(=\)xảy ra khi \(x=5\)

23 tháng 7 2018

a) \(A=x^2-10x+25\)

\(A=\left(x^2-10x+25\right)+0\)

\(A=\left(x-5\right)^2+0\)

Mà  \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow A\ge0\)

Dấu "=" xảy ra khi :  \(x-5=0\Leftrightarrow x=5\)

Vậy ...

10 tháng 8 2016

a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 

10 tháng 8 2016

P=x2-2x+1+4

=(x-1)2+4

vì (x-1)2 >= 0 với mọi x nên (x-1)2+4 lớn hơn hoặc = 4 

dấu = xảy ra khi (x-1)2=0 <=>x=1

vậy gtnn của P=4 khi x=1

30 tháng 8 2017

Ta có : 2x2 - 6x 

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)

Q\(=\left(\sqrt{2}x-6\right)^2-36\)

Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)

Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)

Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)

20 tháng 10 2017

\(\text{a) }A=x^2-10x+25\\ A=x^2-2\cdot x\cdot5+5^2\\ A=\left(x-5\right)^2\\ Do\text{ }\left(x-5\right)^2\ge0\forall x\\ \Leftrightarrow A\ge0\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-5\right)^2=0\\ \Leftrightarrow x-5=0\\ \Leftrightarrow x=5\\ \text{Vậy }A_{\left(Min\right)}=0\text{ }khi\text{ }x=5\)

\(\text{b) }B=x^2+y^2-x+6y+10\\ B=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\\ B=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \left(y+3\right)^2\ge0\forall y\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x;y\\ \text{Dấu "=" xảy ra khi: }\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\\\left(y+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\\ \text{ Vậy }B_{\left(Min\right)}=\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{1}{2};y=-3\)

\(\text{c) }C=2x^2-6x+10\\ C=\left(2x^2-6x+\dfrac{9}{2}\right)+\dfrac{11}{2}\\ C=2\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{2}\\ C=2\left[x^2-2\cdot x\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{11}{2}\\ C=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{2}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{2}\ge\dfrac{11}{2}\\ \text{Dấu "=" xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }C_{\left(Min\right)}=\dfrac{11}{2}khi\text{ }x=\dfrac{3}{2}\)

\(\)

19 tháng 10 2017

b)

\(B=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\left(10-9-\dfrac{1}{4}\right)\)\(B=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

9 tháng 7 2016

a) P= x2 -2x +1 +4 = (x-1)2 +4 

Ta có: (x-1)2>= 0

\(\Rightarrow\) (x-1)2 +4 >= 4

GTNN của P=4 khi x= 1

c) M= (x2-x+1/4)+(y2+6y+9)+3/4   =   (x-1/2)2 + (y+3)+3/4

Ta có: (x-1/2)2 + (y+3) >= 0

\(\Rightarrow\) (x-1/2)2 + (y+3)+3/4 >= 3/4

GTNN của Q=3/4  khi x=1/2         ;    y=-3

 

b) Q= 2(x2-3x)  =  2(x2-3x+9/4)-9/2 =  2.(x-3/2)2-9/2

ta có 2.(x-3/2)2 >=0

\(\Rightarrow\) 2.(x-3/2)2-9/2>= -9/2

GTNN của Q=-9/2 khi x=3/2

9 tháng 7 2016

1 like cho mình nếu đúng nhé

haha

15 tháng 7 2016

a) GTNN P = 4

15 tháng 7 2016

Bạn ns thế thì thà mik ko đăng len càn hơn

19 tháng 6 2016

a) \(Q=2\left(x^2-3x\right)\)

\(Q=2\left(x^2-2\times x\times\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu bằng <=> \(x=\frac{3}{2}\)