K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DG
1
NM
Nguyễn Minh Quang
Giáo viên
12 tháng 1 2021
ta có
\(y=2x+\frac{1}{x^2}-2\)
hay \(y=x+x+\frac{1}{x^2}-2\ge3\sqrt[3]{\frac{x.x.1}{x^2}}-2=3-2=1\)
vậy giá trị nhỏ nhất của y là 1
Dấu bằng xảy ra khi \(x=\frac{1}{x^2}\Leftrightarrow x=1\)
NT
1
3 tháng 12 2019
Lập bảng thay các giá trị nguyên trong khoảng vào hàm rồi calc x:
x=0 ra kq:-504
x=1 ra kq:-515(GTNN)
x=2 ra kq:-472
x=3 ra kq:-339(GTLN)
TP
0
a:
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=-\dfrac{\left(-2\right)}{2\cdot1}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot3}{4\cdot1}=-\dfrac{4-12}{4}=2\end{matrix}\right.\)
=>Hàm số đồng biến khi x>1 và nghịch biến khi x<1
=>Trong khoảng (-1;1) thì khi x tăng thì y giảm và trong khoảng (1;2) thì khi x tăng thì y tăng
=>Khi x=1 thì f(x) min
=>\(y=1^2-2\cdot1+3=1-2+3=2\)
b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-2\right)}{2\cdot1}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot5}{4}=-\dfrac{4-20}{4}=-\dfrac{-16}{4}=4\end{matrix}\right.\)
=>Hàm số nghịch biến khi x<1 và đồng biến khi x>1
=>Trên khoảng [2;3] thì khi x tăng thì y tăng
Do đó: Khi x=2 thì y min và x=3 thì y max
Khi x=2 thì \(y=2^2-2\cdot2+5=5\)
Khi x=3 thì \(y=3^2-2\cdot3+5=9+5-6=8\)