\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

2. Cho 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

\(1)\) Ta có : 

\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(M=\left|x+1\right|+\left|x-1\right|\)

\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại ) 

Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)

Chúc bạn học tốt ~ 

21 tháng 6 2018

b,ta co x^2+y^2=1

=>x^2=1-y^2

    y^2=1-x^2

ta co

\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)

=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)

còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
5 tháng 9 2017

ko biet

13 tháng 9 2020

Tìm miền xác định phải không 

a) 

\(1-\sqrt{2x-x^2}\) 

a xác định \(\Leftrightarrow2x-x^2\ge0\) 

\(0\le x\le2\) 

b) 

\(\sqrt{-4x^2+4x-1}\) 

b xác định 

\(\Leftrightarrow-4x^2+4x-1\ge0\) 

\(-\left(4x^2-4x+1\right)\ge0\) 

\(4x^2-4x+1\le0\) 

\(\left(2x-1\right)^2\le0\) 

2x - 1 = 0 

x = 1/2 

c) 

\(\frac{x}{\sqrt{5x^2-3}}\) 

c xác định 

\(\Leftrightarrow5x^2-3>0\) 

\(5x^2>3\) 

\(x^2>\frac{3}{5}\) 

\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\) 

d) 

d xác định 

\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\) 

\(x-\sqrt{2x-1}>0\) 

\(x>\sqrt{2x-1}\) 

\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\) 

e) 

e xác định 

\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\) 

\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) ) 

\(x< -\frac{2}{3}\) 

f) 

f xác định 

\(\Leftrightarrow x^2+x-2>0\) 

\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)