\(\left|2x-\dfrac{1}{2}\right|\)-2017
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

1.

Ta có: \(\left|2x-\dfrac{1}{2}\right|\ge0\)

\(\Rightarrow\left|2x-\dfrac{1}{2}\right|-2017\ge-2017\)

\(\Rightarrow A\ge-2017\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-\dfrac{1}{2}\right|=0\)

\(\Leftrightarrow2x-\dfrac{1}{2}=0\)

\(\Leftrightarrow2x=\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{1}{4}\)

Vậy, MinA = -2017 \(\Leftrightarrow x=\dfrac{1}{4}\)

17 tháng 7 2018

1) Tìm giá trị nhỏ nhất của biểu thức:

A = \(\left|2x-\dfrac{1}{2}\right|\) - 2017

Ta có:

\(\left|2x-\dfrac{1}{2}\right|\) ≥ 0

=> \(\left|2x-\dfrac{1}{2}\right|\) - 2017 ≥ -2017

Dấu " = " xảy ra khi \(2x-\dfrac{1}{2}\) = 0 hay x = \(\dfrac{1}{4}\)

Vậy Min A = -2017 khi x = \(\dfrac{1}{4}\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

21 tháng 12 2017

\(A=2x^2-2\ge-2\)

Dấu "=" xảy ra khi: \(x=0\)

\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)

\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)

Dấu "=" xảy ra khi: \(x=0\)

\(D=3-\left(x+1\right)^2\le3\)

Dấu "=" xảy ra khi: \(x=-1\)

\(E-\left|0,1+x\right|-1,9\le-1,9\)

Dấu "=" xảy ra khi: \(x=-0,1\)

\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)

Dấu "=" xảy ra khi: \(x=0\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

ta có

\(A=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x-2017\right|=1\)

dấu bằng xảy ra khi (x-2017)(x-2018)\(\ge\)0

bn tự làm tiếp

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)