Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|2y-1\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|2y-1\right|+11\ge11\)
\(\Rightarrow A\ge11\)
\(\Rightarrow\)GTNN của A là 11 \(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|2y-1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy ...
b) Ta có: \(\hept{\begin{cases}\left|x-1,2\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-1,2\right|+\left|y+1\right|+1\ge1\)
\(\Rightarrow\frac{1}{\left|x-1,2\right|+\left|y+1\right|+1}\le1\)
\(\Rightarrow\frac{7}{\left|x-1,2\right|+\left|y+1\right|+1}\le7\)
\(\Rightarrow B\le7\)
\(\Rightarrow\)GTNN của B là 7 \(\Leftrightarrow\hept{\begin{cases}\left|x-1,2\right|=0\\\left|y+1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1,2\\y=-1\end{cases}}\)
Vậy ...
1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
\(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
\(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
\(2x=\frac{53}{30}\)
\(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
\(2x=\frac{37}{30}\)
\(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
\(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
\(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
\(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
\(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
\(-\frac{5}{7}x=-\frac{11}{45}\)
\(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}
Bài 2
a: \(A=\left|5-x\right|+\dfrac{2}{3}\ge\dfrac{2}{3}\)
Dấu '=' xảy ra khi x=5
b: \(B=5\left(x-2\right)^2+1\ge1\)
Dấu '=' xảy ra khi x=2
\(a,\left|3x-1\right|=\left|5-2x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)
b,\(\left|2x-1\right|+x=2\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)
c.\(A=0,75-\left|x-3,2\right|\)
Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)
Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)
Vậy Max A = 0,75 khi x = 3,2
\(d,B=2.\left|x+1,5\right|-3,2\)
Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2
Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)
\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)
Vậy Min B = -3,2 khi x = -1,5
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
\(\Rightarrow5\left(x-1\right)=4\left(2x+1\right)\)
\(\Rightarrow5x-5=8x+4\)
\(\Rightarrow5x-8x=4+5\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
vậy_
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\)
\(\Rightarrow x^2+x+2x+2=x^2-3x-x+3\)
\(\Rightarrow x^2+x+2x-x^2+3x+x=3-2\)
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
vậy_
1. Ta có \(-\sqrt{x}=-2\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\Rightarrow5x^2+7x=5.4^2+7.4=108\)
\(-\sqrt{x}=-2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)..\)
Thế vào biểu thức đã cho \(5x^2+7x\)ta được \(5.4^2+7.4=108\)
Vậy.....
2) Giả sử \(\sqrt{5}\)là số hữu tỉ \(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in Z;\left(a,b\right)=1\right)\)
\(\Rightarrow\frac{a^2}{b^2}=5\Leftrightarrow a^2=5b^2\Rightarrow a^2⋮5\Rightarrow a⋮5\Rightarrow a^2⋮25\)
Mặt khác \(a^2=5b^2\Rightarrow5b^2⋮25\Leftrightarrow b^2⋮5\Rightarrow b⋮5\)
Như vậy a và b cùng chia hết cho 25 . Mà theo giả thiết \(\left(a,b\right)=1\)nên vô lí
Suy ra \(\sqrt{5}\)không phải là số hữu tỉ nên là số vô tỉ
\(A=\left(13+x\right)\left(17+x\right)\left(2-x\right)\le0\)
Nếu \(x< -17\), ta có 13 + x < 0, 17 + x \(\le\) 0, 2 - x > 0
Vậy nên A \(>\) 0,
Nếu \(-17\le x\le-13\), ta có: 13 + x < 0 , 17 + x > 0, 12 - x > 0. Vậy thì \(A\le0\)
Nếu \(-13< x< 2\), ta có: 13 + x > 0, 17 + x > 0, 2 - x > 0. Vậy nên \(A>0\)
Nếu \(x\ge2\) , ta có \(13+x>0,17+x>0,2-x\ge0\). Vậy nên \(A\le0\)
Vậy để \(A\le0\) thì \(-17\le x\le-13\) hoặc \(x\ge2.\)
a) \(A=2\left|5-x\right|-2x+5\)
*Với \(x\le5\)thì \(5-x\ge0\Rightarrow\left|5-x\right|=5-x\Rightarrow2\left|5-x\right|=10-2x\)
Lúc đó \(A=10-2x-2x+5=15-4x\)
Mà \(x\le5\Rightarrow-4x\ge-20\Rightarrow15-4x\ge-5\)(1)
*Với \(x>5\)thì \(5-x< 0\Rightarrow\left|5-x\right|=x-5\Rightarrow2\left|5-x\right|=2x-10\)
Lúc đó \(A=2x-10-2x+5=-5\)(2)
Từ (1) và (2) suy ra \(A\ge-5\)
\(\Rightarrow A_{min}=-5\Leftrightarrow x>5\)
b) \(D=-2\left|x-4\right|-2x+1\)
*Với \(x\ge4\)thì \(x-4\ge0\Rightarrow\left|x-4\right|=x-4\Rightarrow-2\left|x-4\right|=-2x+8\)
Lúc đó \(D=-2x+8-2x+1=9-4x\)
Mà \(x\ge4\Rightarrow-4x\le-16\Rightarrow9-4x\le-7\)(1)
*Với \(x< 4\)thì \(x-4< 0\Rightarrow\left|x-4\right|=4-x\Rightarrow-2\left|x-4\right|=2x-8\)
Lúc đó \(D=2x-8-2x+1=-7\)(2)
Từ (1) và (2) suy ra \(D\le-7\)
\(\Rightarrow D_{max}=-7\Leftrightarrow x< 4\)