Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
a)ĐKXĐ:x khác 4, x>0
\(Q=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2x}{\left(x-4\right)\left(\sqrt{x}-2\right)}\)
mình nghĩ đề sai nên không làm tiếp nữa
1.a)ĐKXĐ:\(\left\{{}\begin{matrix}x-1\ge0\\1-\sqrt{x-1}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne2\end{matrix}\right.\)
b)ĐKXĐ:\(\left\{{}\begin{matrix}x^2-2x+1\ge0\\\sqrt{x^2-2x+1}\ne0\end{matrix}\right.\Leftrightarrow x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\) luôn đúng với mọi x \(\ne\)1
Vậy biểu thức xác định khi \(x\ne1\)
2.\(B=\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\frac{\sqrt{16-2\sqrt{15}}}{\sqrt{60}-2}=\frac{\sqrt{15-2\sqrt{15}+1}}{2\sqrt{15}-2}=\frac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}=\frac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\frac{1}{2}\)
3.a)ĐKXĐ:\(x\ge0\)
b)\(Q=\left(\frac{1}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right):\frac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}\left(x+1\right)}\right):\frac{x-\sqrt{x}+1}{\sqrt{x}^3+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}\left(x+1\right)}.\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
c)\(Q=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\)
Để \(Q\in Z\) thì
\(1⋮\sqrt{x}\)
\(\Rightarrow\sqrt{x}\in\left\{-1;1\right\}\)(loại -1 vì \(\sqrt{x}\ge0\))
\(\Rightarrow x\in\left\{1\right\}\)
cho mik hoi \(x\in Z\) \(Q\in Z\) khi nao v