\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

* \(\sqrt{\dfrac{x}{3}}\) có nghĩa \(\Leftrightarrow\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\) vậy \(x\ge0\) thì \(\sqrt{\dfrac{x}{3}}\) có nghĩa

* \(\sqrt{-5x}\) có nghĩa \(\Leftrightarrow-5x\ge0\Leftrightarrow x\le0\) vậy \(x\le0\) thì \(\sqrt{-5x}\) có nghĩa

14 tháng 6 2017

a) \(x\ne\sqrt{3};x\ne-\sqrt{3}\)

b)\(x\ne3;x\ne-1\)

c)\(x\ne0;x\ne-2\)

d)\(x\ne3;x\ne2\)

1 tháng 8 2020

\(\frac{\sqrt{-3x}}{x^2-1}\)

Điều kiện để căn thức có nghĩa là :

\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)

22 tháng 8 2018

\(\sqrt{4x-x^2-2}\)

ĐKXĐ : \(4x-x^2-2\ge0\)

\(\Leftrightarrow x^2-4x+2\le0\)

Ta có : \(x^2-4x+2=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot2=8>0\)

=> Phương trình có hai nghiệm

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

Để \(x^2-4x+2\le0\)

\(\Rightarrow\orbr{\begin{cases}x\ge2+\sqrt{2}\\x\le2-\sqrt{2}\end{cases}}\)

Vậy ....

\(\sqrt{x^2-5}\ge0\Rightarrow x^2-5\ge0\)

\(\Rightarrow x^2\ge5\)

\(\Rightarrow x\ge\sqrt{5}\)

17 tháng 7 2019

Vy Thị Hoàng Lan\(=-\sqrt{5}\)vẫn đúng nhé.

Ta có: \(\sqrt{x^2-5}=\sqrt{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}\)

Để căn thức có nghĩa thì \(x+\sqrt{5}\)và \(x-\sqrt{5}\)cùng dấu

\(TH1:\hept{\begin{cases}x+\sqrt{5}\ge0\\x-\sqrt{5}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\sqrt{5}\\x\ge\sqrt{5}\end{cases}}\Leftrightarrow x\ge\sqrt{5}\)

\(TH1:\hept{\begin{cases}x+\sqrt{5}\le0\\x-\sqrt{5}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\sqrt{5}\\x\le\sqrt{5}\end{cases}}\Leftrightarrow x\le-\sqrt{5}\)

4 tháng 7 2021

a,\(\sqrt{\frac{x-3}{4-x}}\)

Biểu thức trên xác định

 \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)

Vậy biểu thức trên xác định khi \(3\le x< 4\)

b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)

Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)

=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)

                                             \(\Leftrightarrow2x>3\)

                                               \(\Leftrightarrow x>\frac{3}{2}\)

Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)

a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)

\(\Leftrightarrow3\le x< 4\)

b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)

mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)

nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)

\(\Leftrightarrow x>\frac{3}{2}\)

9 tháng 10 2016

help me

9 tháng 10 2016

 1,Điều kiện để \(\sqrt{a}\) có nghĩa  là \(a\ge0\)

2,  a, để căn thức  \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)

                                                                 \(\Leftrightarrow2x\ge-6\)

                                                                 \(\Leftrightarrow x\ge-3\)

b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)

                                                             \(\Leftrightarrow2x\ge3\)

                                                              \(\Leftrightarrow x\ge\frac{3}{2}\)