Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Gọi 3 số đó là : a) b) c)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là số nguyên
Vì a ; b ; c số tự nhiên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là phân số
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn nhất \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}< 2\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ nhất \(>0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Vậy 3 số tự nhiên cần tìm là : 2 ; 3 ; 6
a)
\(A=\frac{4}{6}\times10+\frac{6}{10}\times16+\frac{1}{16}\times3+\frac{1}{24}\times7+\frac{1}{28}\times5\)
\(A=\frac{20}{3}+\frac{48}{5}+\frac{3}{16}+\frac{7}{24}+\frac{5}{28}\)
\(A=\frac{11200}{1680}+\frac{16128}{1680}+\frac{315}{1680}+\frac{490}{1680}+\frac{300}{1680}\)
\(A=\frac{26433}{1680}\)
Vậy \(A=\frac{26433}{1680}\)
Trả lời
Ta có
\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)
Mà 225 là số lẻ nên \(\hept{\begin{cases}100a+3b+1\\2^a+10a+b\end{cases}}\)cùng lẻ (2)
*) Với a=0 ta có
Từ (1)<=>(100.0+3b+1)(\(2^0\)+10.0+b)=225
<=>(3b+1)(1+b)=225=\(3^2.5^2\)
Do 3b+1 :3 dư 1 và 3b+1>1+b
Nên (3b+1)(1+b)=25.9\(\Rightarrow\hept{\begin{cases}3b+1=25\\1+b=9\end{cases}\Leftrightarrow b=8}\)
*) Với a\(\ne\)0 (a\(\in N\)), ta có:
Khi đó 100a là số chẵn, từ (2)=>3b+1 lẻ=>b chẵn
\(\Rightarrow2^a+10a+b\)chẵn, trái với (2)
\(\Rightarrow b=\varnothing\)
Vậy \(\hept{\begin{cases}a=0\\b=8\end{cases}}\)