Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)
Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Cach khac
Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Ta co:
\(a+b+c=abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(\Rightarrow xy+yz+zx=1\)
\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
Ta lai co:
\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)
Tuong tu:
\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)
\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
\(\Rightarrow a=b=c=\sqrt{3}\)
Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)
2.
Đặt \(\left\{{}\begin{matrix}2n+2003=k^2\\3n+2005=q^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3k^2=6n+6009\\2q^2=6n+4010\end{matrix}\right.\)
\(\Leftrightarrow3k^2-2q^2=1999\)(*)
Vì 1999 là số lẻ, \(2q^2\) là số chẵn do đó \(3k^2\) phải là số lẻ
\(\Rightarrow k^2\) lẻ \(\Leftrightarrow k\) lẻ
Đặt \(k=2a+1\)
(*) \(\Leftrightarrow3\left(2a+1\right)^2-2q^2=1999\)
\(\Leftrightarrow3\left(4a^2+4a+1\right)-2q^2=1999\)
\(\Leftrightarrow12a^2+12a+3-2q^2=1999\)
\(\Leftrightarrow12a^2+12a-2q^2=1996\)
\(\Leftrightarrow2q^2=12a^2+12a-1996\)
\(\Leftrightarrow q^2=6a^2+6a-998\)
\(\Leftrightarrow q^2=6a\left(a+1\right)-998\)
Vì \(a\left(a+1\right)\) là tích 2 số liên tiếp nên \(a\left(a+1\right)⋮2\)
Do đó \(6a\left(a+1\right)=3\cdot2a\left(a+1\right)⋮4\)
Mà 998 chia 4 dư 2
Vì vậy \(6a\left(a+1\right)-998\) chia 4 dư 2
Mặt khác \(q^2\) là số chính phương nên \(q^2\) chia 4 không dư 2
Vậy không có giá trị nào của \(n\) thỏa mãn đề bài.
@Akai Haruma, @Nguyễn Việt Lâm, tth, Trần Thanh Phương,
Nguyễn Văn Đạt, svtkvtm, buithianhtho, Lê Thảo, lê thị hương giang
Giúp mk vs nha! Cảm ơn nhiều!