K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2018

1. Giả sử \(a-3⋮a^2+2\Rightarrow\dfrac{a-3}{a^2+2}=A\) \(\left(A\in Z;A\ne0\right)\)

\(\Rightarrow a-3=A.a^2+2A\Rightarrow A.a^2-a+2A+3=0\)

\(\Delta=1-4A\left(2A+3\right)\ge0\Rightarrow-8A^2-12A+1\ge0\)

\(\Rightarrow\dfrac{-3-\sqrt{11}}{4}\le A\le\dfrac{-3+\sqrt{11}}{4}\)

Mà A nguyên \(\Rightarrow A=0\) hoặc \(A=-1\)

\(A=0\Rightarrow a-3=0\Rightarrow a=3\)

\(A=-1\Rightarrow-a^2-a+1=0\) \(\Rightarrow\) pt ko có nghiệm nguyên

Vậy a=0 thì a-3 chia hết \(a^2+2\)

2. \(x^2-2y=1\Rightarrow2y=x^2-1=\left(x-1\right)\left(x+1\right)\)

Nếu x chẵn \(\Rightarrow x=2\Rightarrow\) y không phải số tự nhiên (loại)

Nếu x lẻ \(\Rightarrow x-1\)\(x+1\) đều là số chẵn \(\Rightarrow\left(x-1\right)\left(x+1\right)⋮4\)

Đặt \(\left(x-1\right)\left(x+1\right)=4k\) với \(k\in N;k\ge1\)

\(\Rightarrow2y=4k\Rightarrow y=2k\)

Nếu \(k=1\Rightarrow y=2\Rightarrow x^2=2y+1=5\) \(\Rightarrow\) x không phải số tự nhiên (loại)

Nếu \(k>1\) \(\Rightarrow\) y là số chẵn lớn hơn 2 \(\Rightarrow\) y không phải là số nguyên tố

\(\Rightarrow\)Không tồn tại cặp số nguyên tố (x;y) nào để \(x^2-2y=1\)

3. Nếu d=0 =>d chia hết cho 6. Xét d>0, d là STN

Ta luôn có \(p>2\) do nếu \(p=2\Rightarrow p+2d=2\left(d+1\right)\) là hợp số, vô lý

\(\Rightarrow\) p là số lẻ \(\Rightarrow d\) là số chẵn (vì nếu d lẻ thì p+d chẵn là hợp số) \(\Rightarrow d⋮2\)

TH1: \(p=3a+1\)

Nếu \(d=3b+1\Rightarrow p+2d=3a+1+6b+2=3\left(a+2b+1\right)⋮3\)

\(\Rightarrow\) vô lý (do giả thiết p+2d là số nguyên tố)

Nếu \(d=3b+2\Rightarrow p+d=3a+1+3b+2=3\left(a+b+1\right)⋮3\) vô lý

Vậy \(d=3b\Rightarrow d⋮3\Rightarrow d⋮6\)

TH2: \(p=3a+2\)

Nếu \(d=3b+1\Rightarrow p+d=3a+2+3b+1=3\left(a+b+1\right)⋮3\) (loại)

Nếu \(d=3b+2\Rightarrow p+2d=3a+2+6b+4=3\left(a+2b+2\right)⋮3\) (loại)

Vậy \(d=3b⋮3\Rightarrow d⋮6\)

Kết luận: nếu p, p+d, p+2d là số nguyên tố thì d chia hết cho 6

4. Đề sai. Ta lấy ví dụ n=3 \(\Rightarrow2^3+1=9\) là hợp số, nhưng \(2^3-1=7\) là số nguyên tố

Hoặc \(n=5...\)

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

27 tháng 8 2019

1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)

1 tháng 9

a, b có vai trò như nhau G/S a>b

ta có \(a^2\) - \(b^2\) chia hết cho 60=>có chữ số tận cùng là 0. Mà a,b >0

=> a và b có cùng chữ số tận cùng .(1), và \(a^2\equiv b^2\)(mod 3,4,5)=>a\(\equiv\) b ( mod 3,4,5)

=> a>b>5

(vì nếu b=5 thì a>5 và có chữ số tận cùng là 5 vì a đồng dư với b theo mod 5 ,nhưng a là số nguyên tố. => b khác 5,chứng minh tương tự khi b=3)

mà a,b >2 => a,b có cùng chữ số tận cùng là {1,3,5,7,9}

mà a và b nằm trong 11 số nguyên tố bất kì. Suy ra có ít nhất 2 số có cùng chữ số tận cùng chữ số tận cùng

(giải thích vì nếu trong 11 số nguyên tố bất kì ko có số nào có cùng sô tận cùng thì phải có tới 11 chữ số tận cùng khác nhau. Vô lí)

Vậy đpcm.....



1 tháng 9

bài này mk nghĩ là như thế vì chỉ cần chứng minh trong 11 số nguyên tố bất kì luôn có 2 số có cùng chữ số tận cùng thì hiệu 2 bình phương của 2 số đó luôn chia hết cho 3 vì a, b không chia hết cho 3 => a bình , b bình đòng dư với 1 khi chia 3. và 2 số cũng luôn chia hết cho 4 vì (a+b)(a-b) là tích 2 số lẻ hơn thế nữa khi cm đc trong 11 số nguyên tố bất kì luôn có 2 số có cùng chữ số tận cùng thì a bình và b bình cũng có cùng chữ số tận cùng => hiệu sẽ chia hết cho 5. tổng hợp lại Suy ra nó chia hết cho 5


Tham khảoa: giả sử n^2 chia hết cho 3 nhưng n ko chia hết cho 3 
=> n chia 3 dư a (0<a <3) 
=> n = 3b +a 
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3 
=> a^2 chia hết cho3 mà 0<a <3 
=> vô lý do ko có số nào thỏa mãn 
=> giả sử sai 
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: undefinedc:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
                =>n^2 = 4k^2
                =>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ
AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 1:

Ta có:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)

\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)

\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)

Cộng theo vế các BĐT trên:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 2:

BĐT cần chứng minh tương đương với:

$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$

$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$

$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$

BĐT trên luôn đúng vì:

$(a-b)^2\geq 0, \forall a,b$

$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$

$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$

$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$

$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$

24 tháng 7 2018

Mệnh đề A không phải định lí nha bạn.

Bởi vì định lí là 1 mệnh đề đúng mà mệnh đề A không phải là mệnh đề đúng nên A k phải là định lí.

3 tháng 9 2019

a) Gọi n chẵn là 2a

⇒ n2 = 2a . 2a = 4a2 ⋮ 2

⇒ n chẵn thì n2 chẵn

5 tháng 6 2016

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k)  3

Ta phải chứng minh rằng Sk+1  3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1) 

                        = k3  + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5 

                         = k3 + 3k2 + 5k + 3k2 + 9k + 9

 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk   3, mặt khác 3(k2 + 3k + 3)  3 nên Sk+1  3.

Vậy (n3 + 3n2 + 5n)  3 với mọi n ε N*  .


 

5 tháng 6 2016

b) Đặt Sn = 4n + 15n - 1 

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1   9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1  9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

                                    = 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)    

Theo giả thiết quy nạp thì  Sk   9  nên 4S1   9, mặt khác 9(5k - 2)   9, nên Sk+1  9

Vậy (4n + 15n - 1)  9 với mọi n ε N*