Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét số hữu tỉ \(\dfrac{a}{b}\) , có thể coi b > 0
a) Nếu a , b cùng dấu thì a > 0 và b > 0
Suy ra\(\dfrac{a}{b}>\dfrac{0}{b}=0\) tức là \(\dfrac{a}{b}\) dương
b) Nếu a,b khác dấu thì a < 0 và b > 0
Suy ra \(\dfrac{a}{b}< \dfrac{0}{b}=0\) tức là \(\dfrac{a}{b}\) âm
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
1.
Ta có: \(\dfrac{3}{-4}=\dfrac{-3}{4};\dfrac{-12}{15}=\dfrac{-4}{5};\dfrac{-15}{20}=\dfrac{-3}{4};\dfrac{24}{-32}=\dfrac{-3}{4};\dfrac{-20}{28}=\dfrac{-5}{7};\dfrac{-27}{36}=\dfrac{-3}{4}\)
Vậy trong các phân số trên những phân số biểu diễn số hữu tỉ \(\dfrac{3}{-4}\) là:
\(\dfrac{3}{-4}=\dfrac{-15}{20}=\dfrac{24}{-32}=\dfrac{-27}{36}\)
2.
a. Ta có: \(x=\dfrac{2}{-7}=\dfrac{-2}{7}=\dfrac{-22}{77};y=\dfrac{-3}{11}=\dfrac{-21}{77}\)
Vì \(-22< -21\) nên \(\dfrac{2}{-7}< \dfrac{-3}{11}\)
Vậy x < y
b. Ta có: \(x=\dfrac{-213}{300};y=\dfrac{18}{-25}=\dfrac{-18}{25}=\dfrac{-216}{300}\)
Vì \(-213>-216\) nên \(\dfrac{-213}{300}>\dfrac{18}{-25}\)
Vậy x > y
c. Ta có: \(x=-0,75=\dfrac{-3}{4};y=\dfrac{-3}{4}\)
Vì -3 = -3 nên \(-0,75=\dfrac{-3}{4}\)
Vậy x = y
3.
a.* Với a, b cùng dấu thì \(\dfrac{a}{b}>0\)
* Với a, b khác dấu thì \(\dfrac{a}{b}< 0\)
• Tổng quát: Số hữu tỉ \(\dfrac{a}{b}\left(a,b\in Z;b\ne0\right)\) dương nếu a,b cùng dấu; âm nếu a,b khác dấu; bằng 0 nếu a=0
Câu 2:
Ta có: \(x^2=1\)
=>x=1 hoặc x=-1
=>x là số hữu tỉ
Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) => ad < bc (1)
Thêm ab và cả hai vế của (1) :
ad + ab < bc + ab
a(b+d) < b(a+c)
=> \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) (2)
Thêm cd vào hai vế của (1) :
ad + cd < bc + cd
d( a+c) < c( b+d )
=> \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\) (3)
Từ (2) và (3) ta có : \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\)
Cho \(a,b\in\mathbb{Z},b>0\). So sánh hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{a+2001}{b+2001}\) ?
Xét tích \(a\left(b+2001\right)=ab+2001a\).
\(b\left(a+2001\right)=ab+2001b\). Vì \(b>0\) nên \(b+2001>0\).
a) Nếu \(a>b\) thì \(ab+2001a>ab+2001b\)
\(a\left(b+2001\right)>b\left(a+2001\right)\)
\(\Rightarrow\dfrac{a}{b}>\dfrac{a+2001}{b+2001}\) (theo bài 5).
b) Tương tự (theo bài 5) nếu \(a< b\) thì \(\Rightarrow\dfrac{a}{b}< \dfrac{a+2001}{b+2001}\).
c) Nếu \(a=b\) thì rõ ràng \(\dfrac{a}{b}=\dfrac{a+2001}{b+2001}\).
Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
Nên \(ab+ad< ab+bc\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)
Lại có \(ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (2)
Từ (1), (2) và sử dụng tính chất "bắc cầu", ta được:
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
(Không dám chắc kết quả là đúng, bởi vì bạn viết đề sai rồi)
Ối nhầm đề nhé! Phải là "CMR nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Bài 2:
a: Để x>0 thì a-3>0
=>a>3
b: Để x<0 thì a-3<0
=>a<3
c: Để x=0 thì a-3=0
=>a=3
Bài 1:
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}-\dfrac{2}{9}-\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
\(=\dfrac{1}{64}\)
Bài 1:
a: Để B>0 thì (a+3)/(a-5)>0
=>a>5 hoặc a<-3
b: Để B=0 thì a=-3
c: Để B<0 thì a+3/a-5<0
=>-3<a<5