Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x+y=4 và x2+y2=10
=>x;y khác 0
vì x+y=4
=> x và y đều chẵn hoặc x và y đều lẻ
TH1: x chẵn; y chẵn
thì => x và y chỉ có thể =2
Ta có: 22+22=4+4=8(ko thỏa mãn)
TH2: x và y đều lẻ=> x và y E { 1;3};{ 3;1}
32+12=9+1=10(thỏa mãn)
Ngược lại cũng thỏa mãn
=> x3+y3=33+13
hay y3+x3=33+13
Các phép tính trên đều = 33+13=27+1=28
=> x3+y3 hay y3+x3 đều = 28
(x+y)2=4
⇒x2+y2+2xy=4
⇒10+2xy=4
⇒2xy=−6
⇒xy=−3
Do đó x3+y3=(x+y).(x2+y2−xy)=2.[10−(−3)]=2.13=26
a/
\(\left(5xy^2-11x^3y+6x^2y^2\right)\div x^2y\)
\(=xy\left(5y-11x^2+6xy\right)\div x^2y\)
\(=\left(5y-11x^2+6xy\right)\div x\)
\(=\frac{5y}{x}-\frac{11x^2}{x}+\frac{6xy}{x}\)
\(=\frac{5y}{x}-11x+6y\)
b/ \(\left[\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3\right]\div\left[-5\left(x+y\right)^3\right]\)
\(=\left(x+y\right)^3\left[\left(x+y\right)^2-2\left(x+y\right)+3\right]\div\left[-5\left(x+y\right)^3\right]\)
\(=\frac{\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)
Với mỗi số tự nhiên m và n ta có: \(x^n:x^m\) khi và chỉ khi \(n\ge m\).
a) \(x^4:x^n\) nên \(n\le4\). Do n là số tự nhiên nên \(n=0,1,2,3,4\).
b) { \(n\in N\)| \(n\ge3\)}.
c) { \(n\in N\)| \(n\ge2\)}.
d) \(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}}\)\(\Leftrightarrow n\ge4\).
cái này là phép toán dễ mà, chỉ cần nắm vũng kiến thức trong chương 1 sách lớp 8 là đc có j đâu?
a) 4x2y3.\(\dfrac{2}{4}\)x3y
= (4.\(\dfrac{2}{4}\))(x2.x3)(y3.y)
=\(\dfrac{1}{2}\)x5y4
b)(5x-2)(25x2+10x+4)
=(5x-2)(5x+2)2
= (5x-2)(5x+2)(5x+2)
=(5x2-22)(5x+2)
a) 4x2y3 .2/4x3y
= 2x5y4
b) (5x-2)(25x2+10x+4)
= 125x3+50x2+20x-50x2-20x-8.
= 125x3-8
b)
\(\left(x+2\right)^4=y^3+x^4\)
\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)
\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)
+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)
\(\Rightarrow y^3>8x^3=\left(2x\right)^3\) (1)
+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)
\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)
\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)
* Với \(y=2x+1\), thay vào biểu thức ta có :
\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)
\(\Leftrightarrow12x^2+26x+15=0\)
\(\Leftrightarrow2x\left(6x+13\right)=-15\)
Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm
* Với \(y=2x+2\), ta có :
\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x+8=0\)
\(\Leftrightarrow x=-1\)
Suy ra : \(y=2.\left(-1\right)+2=0\)
Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
a)
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)
+ Với \(xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Thay vào biểu thức ta đc \(x=y=0\)
+ Với \(xy+1=0\Leftrightarrow xy=-1\)
Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)
Thay vao biểu thức ta thấy thỏa mãn !
Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự