Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a và b lần lượt là chiều rộng và chiều dài của mảnh ruộng hình chữ nhật(m) (với điều kiện a>0, b>0)
Theo bài ra ta có: ab=100=> a=100/b (1)
(a+2)(b-5)=100+5 =105(2)
Thay pt 1) vào pt (2) ta được:
100 -500/b +2b -10=105
<=>100b/b -500/b +2b^2/b -10b/b =105b/b
=>100b -500 +2b^2 -10b-105b=0
<=>2b^2-15b-500=0
<=>2(b^2 -15/2 .b -250)=0
<=>b^2- 15/2.b -250=0
<=>b^2 +25/2 .b -20b -250=0
<=>(b^2 -20b) +(25/2. b -250)=0
<=>b(b-20) + 25/2 .(b-20)=0
<=>(b-20)(b+25/2)=0
<=> b-20 =0 hoặc b+25/2 =0
<=>b=20(thỏa mãn điều kiện) hoặc b=-25/2(loại)
Vậy chiều dài của mảnh ruộng hình chữ nhật là 20 m=> chiều rộng của mảnh vườn là 100/20 =5m
Gọi chiều rộng là x
=>Chiều dài là x+60
Theo đề, ta có: (x+2)(x+55)=x(x+60)+5
=>x^2+57x+110-x^2-60x=5
=>-3x=-105
=>x=35
=>Chiều dài là 95m
Gọi chiều dài thửa ruộng hình chữ nhật là x (m).
Do diện tích thửa ruộng là 100m2 nên chiều rộng của thửa ruộng hình chữ nhật là \(\frac{100}{x}\)( m )
Chiều dài lúc sau của thửa ruộng là x - 5 ( m )
Chiều rộng lúc sau của thửa ruộng là \(\frac{100}{x}+2\)( m )
Diện tích lúc sau của thửa ruộng là \(\left(x-5\right)\times\left(\frac{100}{x}+2\right)\)( m2 )
Vì diện tích của thửa ruộng tăng thêm 5 m2 nên diện tích lúc sau của thửa ruộng là
100 + 5 = 105 ( m2 )
do đó ta có phương trình \(\left(x-5\right)\times\left(\frac{100}{x}+2\right)=105\)( m2 )
\(\Leftrightarrow\left(x-5\right)\times\left(100+2x\right)=105x\)
\(\Leftrightarrow100x+2x^2-500-10x=105x\)
\(\Leftrightarrow2x^2-15x-500=0\)
\(\Leftrightarrow2x^2-40x+25x-500=0\)
\(\Leftrightarrow2x\times\left(x-20\right)+25\times\left(x-20\right)=0\)
\(\Leftrightarrow\left(x-20\right)\times\left(2x+25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\2x+25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=\frac{-25}{2}\left(ktm\right)\end{cases}}\)
Vậy chiều dài ban đầu của thửa ruộng là 20m, chiều rộng ban đầu của thửa ruộng là 5m.
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có; a+b=125 và a/3+2b=125
=>a=75; b=50
Gọi chiều dài chiều rộng thửa ruộng lần lượt a ; b ( a > b> 0 )
Theo bài ra ta có hpt \(\hept{\begin{cases}2\left(a+b\right)=100\\\left(a+5\right)\left(b-2\right)=ab+30\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=50\\-2a+5b=40\end{cases}\Leftrightarrow}\hept{\begin{cases}a=30\\b=20\end{cases}}}\)(tm)
Vậy chiều dài ban đầu là 30 m
chiều rộng ban đầu là 20 m
Gọi: chiều dài ban đầu : 3a (m) , chiều rộng ban đầu : a (m)
Nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng 20m :
( 3a - 5 ) - ( a+ 3 ) = 20
=> a = 14
Diện tích thửa ruộng :
S = 14 x 3 x 14 = 588 (m2)
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chiều dài gấp ba lần chiều rộng nên ta có phương trình: a=3b(1)
Vì khi tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng là 20m nên ta có phương trình:
\(\left(a-5\right)-\left(b+3\right)=20\)
\(\Leftrightarrow a-5-b-3-20=0\)
\(\Leftrightarrow a-b-28=0\)
\(\Leftrightarrow a-b=28\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a=3b\\a-b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-3b=0\\a-b=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2b=-28\\a-3b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=14\\a=3\cdot14=42\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài và chiều rộng của thửa ruộng lần lượt là 42m và 14m
Diện tích thửa ruộng là: \(42\cdot14=588\left(m^2\right)\)