Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)
\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)
\(\Leftrightarrow1+2.sina.cosa=2\)
\(\Leftrightarrow2.sina.cosa=2-1=1\)
\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)
Vậy P=sina.cosa=\(\frac{1}{2}\)
\(Q=\sin^4a+cos^4a\)
\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)
\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na
Bài 1:
\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)
\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)
\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)
Bài 2:
Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?
Không hỏi thì làm sao mà biết cần tính gì
a) P = sin2α + sin2α.\(\frac{cos\text{α}}{sin\text{α}}\) + cos2α - cos2α.\(\frac{sin\text{α}}{cos\text{α}}\)
=sin2α + sinα.cosα + cos2α - cosα.sinα
=sin2α + cos2α
=1
Vậy P không phụ thuộc vào α
b) Q= -cos4α(2cos2α -1 -2) +sin4α(1 -2sin2α+2)
= -cos4α(cos2α -2) +sin4α(cos2α +2)
=-cos4α.cos2α +2cos4α +sin4α.cos2α +2sin4α
=cos2α(sin4α -cos4α) +2(sin4α +cos4α)
=cos2α [\(\left(\frac{1-cos^22\text{α}}{2}\right)^2-\left(\frac{1+cos^22\text{α}}{2}\right)^2\)]+2.[\(\left(\frac{1-cos^22\text{α}}{2}\right)^2+ \left(\frac{1+cos^22\text{α}}{2}\right)^2\)]
= -cos2α.cos2α +1+cos22α
= -cos22α +1+cos22α
=1
Vậy Q không phụ thuộc vào α
Quên cách giải ptlg rồi nên lm câu 4 =.=
\(\cos3x=\cos\left(2x+x\right)=\cos2x.\cos x-\sin2x.\sin x\)
\(=\left(2\cos^2x-1\right)\cos x-2\sin^2x.\cos x\)
\(=2\cos^3x-\cos x-2\sin^2x.\cos x\)
\(\Rightarrow A=\frac{1+\cos x+2\cos^2x-1+2\cos^3x-\cos x-2\sin^2x.\cos x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos^2x+2\cos^3x-2\sin^2x.\cos x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos^2x+2\cos^3x-2\left(1-\cos^2x\right).\cos x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos^2x+2\cos^3x-2\cos x+2\cos^3x}{2\cos^2x-1+\cos x}\)
\(=\frac{2\cos x\left(2\cos^2x+\cos x-1\right)}{2\cos^2x-1+\cos x}=2\cos x\)
\(sinx+cosx=\frac{1}{2}\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)
\(\Rightarrow2sinx.cosx=\frac{1}{4}-1=-\frac{3}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)
Vậy ta có:
\(sin^3x+cos^3x=\left(sinx+cosx\right)\left[\left(sinx+cosx\right)^2-3sinx.cosx\right]\)
\(=\frac{1}{2}\left(\frac{1}{4}+\frac{9}{8}\right)=\frac{11}{16}\)
Bài 2: Mục đích của bài này là gì bạn? Ko thấy yêu cầu?
Bài 3:
\(tanx+cotx=2\Rightarrow\left(tanx+cotx\right)^2=4\)
\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=4\Rightarrow tan^2x+cot^2x+2=4\)
\(\Rightarrow tan^2x+cot^2x=2\)
\(VT=tan^4x+cos^4x-2\left(tan^2x+cot^2x\right)+8\)
\(=\left(tan^2x+cot^2x\right)^2-2\left(tan^2x+cot^2x\right)+6\)
\(=\left(tan^2x+cot^2x-1\right)^2+5\)
Mặt khác áp dụng BĐT \(a^2+b^2\ge2ab\Rightarrow tan^2x+cot^2x\ge2\)
\(\Rightarrow\left(tan^2x+cot^2x-1\right)^2+5\ge\left(2-1\right)^2+5=6>5\Rightarrow VT>5\) (1)
Lại có \(3sinx-4cosx=5\left(sinx.\frac{3}{5}-cosx.\frac{4}{5}\right)\)
Do \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}\frac{3}{5}=cosa\\\frac{4}{5}=sina\end{matrix}\right.\)
\(\Rightarrow VP=3sinx-4cosx=5\left(sinx.cosa-cosx.sina\right)=5sin\left(x-a\right)\)
Do \(sin\left(x-a\right)\le1\Rightarrow5sin\left(x-a\right)\le5\Rightarrow VP\le5\) (2)
(1), (2) \(\Rightarrow VT>VP\)
Giả sử các biểu thức đều xác định
a/
\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)
b/
\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)
c/
\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)
d/
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)
e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)
\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)