\(2\sqrt{2}+6\)

b) 3 và  \(\sqrt{2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

a) \(2\sqrt{2}+6=\sqrt{8}+6< \sqrt{9}+6=3+6=9\)

Vậy \(2\sqrt{2}+6< 9\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2\sqrt{6}+3=2+\sqrt{24}+3>5+4=9=3^2\)

Vậy \(\sqrt{3}+\sqrt{2}>3\)

23 tháng 6 2019

\(\left(-4\right)^2>3^2\Rightarrow-4>3\) à kiệt

4 tháng 10 2016

k đi mình làm cho

7 tháng 8 2016

\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)

\(\sqrt{8}+3>6+\sqrt{2}\)

7 tháng 8 2016

Ta có:

\(a.\)Ta có:

\(7>4\) nên \(\sqrt{7}>\sqrt{4}\) 

\(\Rightarrow\)  \(\sqrt{7}>2\)  \(\left(1\right)\)

và  \(5>4\)  nên  \(\sqrt{5}>\sqrt{4}\)

\(\Rightarrow\)  \(\sqrt{5}>2\)  \(\left(2\right)\)

Mặt khác, ta lại có:  \(\sqrt{12}< \sqrt{16}=4\)  \(\left(i\right)\)

Do đó,  từ hai bđt  \(\left(1\right)\)  và   \(\left(2\right)\) , kết hợp với chú ý  \(\left(i\right)\)  ta suy ra được:

\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)

28 tháng 6 2016

Toán lớp 9

28 tháng 6 2016

mình ghi nhầm pn ơi.. bài 2 là \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{6}}\)

10 tháng 9 2020

\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\)    ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))

\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)

\(=\sqrt{4\cdot\sqrt{7}}\)

\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)

\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)

\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)

\(\Leftrightarrow4\sqrt{21}\)

cuối lười tính nên thôi nhá :>

11 tháng 9 2020

tks :>

14 tháng 7 2018

n là số nguyên dương

Bình phương hai vế, ta được:

\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)

\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)

Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)

Mà 2n + 3 > 2n + 1

 \(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)

=> ( √n+2 -  √n+1)^2 > ( √n-1 -  √n)^2

=>  √n+2 -  √n+1 >  √n-1 -  √n

P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn

14 tháng 7 2018

Hình như sai b ạ

17 tháng 6 2017

câu đầu bạn xem lại đề đi nha 

các phần còn lại

b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)

c)tính từng căn nha

\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)

\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)

\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)

thay vào tính C đc C=2

d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)

=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)

=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

14 tháng 8 2020

a) \(\sqrt{2,5.2560}=\sqrt{25.256}=\sqrt{25}.\sqrt{256}=5.16=80\)

b) \(\sqrt{3,5}.\sqrt{2,5}.\sqrt{7}.\sqrt{\frac{1}{5}}=\sqrt{\frac{7}{2}}.\sqrt{\frac{5}{2}}.\sqrt{7}.\sqrt{\frac{1}{5}}\)

\(=\sqrt{\frac{7}{2}.\frac{5}{2}.7.\frac{1}{5}}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)

c) \(\sqrt{40}.\sqrt{12,1}.\sqrt{0,09}=\sqrt{40.12,1}.\sqrt{0,09}\)

\(=\sqrt{4.121}.\sqrt{9.0,01}=\sqrt{4}.\sqrt{121}.\sqrt{9}.\sqrt{0,01}\)

\(=2.11.3.0,1=6,6\)

28 tháng 3 2018

khi mk tính bằng máy tính thì kết quả không = 1 mà bằng 0,7136222575 nhé bn.

vì vậy k cần CM nữa đâu Kết quả không = 1. K tin thì tính thử đi!!!

Đây là câu trả lời của mk, k cho mk nha!!!

28 tháng 3 2018

mình tính máy tính rồi kết quả = 1