\(\dfrac{1}{2^{300}}\) và \(\dfrac{1}{300^{200}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

24 tháng 7 2017

\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)

\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)

\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)

\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)

\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)

\(=\dfrac{7}{2\left(1+6\right)}\)

\(=\dfrac{7}{2.7}\)

\(=\dfrac{1}{2}\)

a) \(5^{20}và2550^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)

=> \(5^{20}< 2550^{10}\)

b) \(999^{10}và999999^5\)

\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)

=> \(999^{10}< 999999^5\)

c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)

\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)

\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)

\(\dfrac{-1}{5}=\dfrac{-3}{15}\)

\(\dfrac{-1}{3}=\dfrac{-5}{15}\)

=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)

=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)

20 tháng 8 2017

thank you very much

22 tháng 7 2017

gianroi

8 tháng 4 2017

So sánh các số hữu tỉ:

a)

b)

c) x = -0,75 và

Lời giải:

a)

Vì -22 < -21 và 77> 0 nên x <y

b)

Vì -216 < -213 và 300 > 0 nên y < x

c)

Vậy x=y

9 tháng 4 2017

Lời giải:

a)

Vì -22 < -21 và 77> 0 nên x <y

b)

Vì -216 < -213 và 300 > 0 nên y < x

c)

Vậy x=y



4 tháng 7 2018

\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}< \left(\dfrac{1}{2}\right)^{50}\\ \left(\dfrac{1}{2}\right)^{300}=\left(\dfrac{1}{2}\right)^{3\cdot100}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\\ \left(\dfrac{1}{3}\right)^{200}=\left(\dfrac{1}{3}\right)^{2\cdot100}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\\ \dfrac{1}{8}>\dfrac{1}{9}\Rightarrow\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\Rightarrow\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\\ \left(0,3\right)^{20}=\left(0,3\right)^{2\cdot10}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}< \left(0,1\right)^{10}\)

5 tháng 7 2018

a) \(\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{40}< \left(\dfrac{1}{2}\right)^{50}\)

\(40< 50\)

b)\(\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)

\(\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)

\(\Rightarrow\text{​​}\text{​​}\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)

\(\dfrac{1}{8}>\dfrac{1}{9}\)

c)\(\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)

\(\Rightarrow\left(0,1\right)^{10}>\left(0,3\right)^{20}\)

\(0,1>0,09\)

3 tháng 8 2018

\(a)\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}\)

\(=\dfrac{18}{24}+\dfrac{12}{24}+\left(-\dfrac{5}{24}\right)\)

\(=\dfrac{18+12+\left(-5\right)}{24}\)

\(=\dfrac{25}{24}\)

\(b)\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)

\(=\dfrac{5}{7}.\dfrac{-2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)

\(=\dfrac{5}{7}\left(\dfrac{-2}{13}+\dfrac{-11}{13}+\dfrac{13}{13}\right)\)

\(=\dfrac{5}{7}.0=0\)

\(c)\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}\)

\(=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)

\(=1+1+\dfrac{1}{2}\)

\(=2\dfrac{1}{2}\)

\(d)\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}\)

\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{38}{51}+\dfrac{306}{714}\)

\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{532}{714}+\dfrac{306}{714}\)

\(=\dfrac{1391}{714}\)

3 tháng 8 2018

a)\(\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}=\dfrac{18}{24}+\dfrac{12}{24}-\dfrac{5}{24}=\dfrac{25}{24}\)

b)\(\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}=\dfrac{5}{7}\left(\dfrac{-2}{13}-\dfrac{11}{13}+1\right)=\dfrac{5}{7}.0=0\)

c)\(\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=2,5\)

d)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}=\dfrac{15}{34}+\left(\dfrac{1}{3}+\dfrac{38}{51}+\dfrac{3}{7}\right)=\dfrac{15}{34}+\dfrac{538}{357}=\dfrac{1391}{714}\)

14 tháng 10 2018

a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Do : \(8^{100}< 9^{100}\)

=> \(2^{300}< 3^{200}\)

b) Do \(\dfrac{13}{38}>\dfrac{13}{39}\)

Mà : \(\dfrac{13}{39}=\dfrac{1}{3}\)

=> \(\dfrac{13}{38}>\dfrac{1}{3}\)

c)Do : \(\sqrt{235}>\sqrt{225}\)

Mà : \(\sqrt{225}=15\)

=> \(\sqrt{235}>15\)

14 tháng 10 2018

a) Ta có:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Ta thấy 8<9 suy ra \(8^{100}< 9^{100}\)

Vậy \(2^{300}< 3^{200}\)

18 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)

\(\Leftrightarrow x=\dfrac{-63}{10}\)

Vậy ...

b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)

\(\Leftrightarrow x=\dfrac{-4}{11}\)

Vậy ...

Các câu sau làm tương tự câu b)

23 tháng 10 2018

a) (1/3)^500=(1/3)^5*100=(1/3*5)^100=(5/3)^100

(1/5)^300=(1/5)^3*100=(1/5*3)^100=(3/5)^100

Vì 5/3 >3/5

=>(5/3)^100 > (3/5)^100

Vậy (1/3)^500>(1/5)^300

Dấu "^" là dấu lũy thừa nha bạn

23 tháng 10 2018

hộ mik câu b nha

19 tháng 6 2018

8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)

=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)

=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)

=7.(-7)

=-49