\(\)2 và căn của 2+1

                   1 và căn của 3-1

     ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

1 .    \(\sqrt{2+1}\)\(\sqrt{3}\)

   ta có : \(2\)\(3\)\(\Rightarrow\)\(\sqrt{2}\)<\(\sqrt{3}\)\(\Rightarrow\)\(2\)\(\sqrt{3}\)

14 tháng 6 2017

\(\sqrt{3-1}\)\(\sqrt{2}\)

ta có : \(1\)\(2\)\(\Rightarrow\)\(\sqrt{1}\)\(\sqrt{2}\)\(\Rightarrow\)\(1\)\(\sqrt{3}-1\)

19 tháng 9 2019

cái này có phải bình phương hai vế nên ko nhỉ?

19 tháng 9 2019

Câu 6 có sai ko?

NV
13 tháng 8 2020

5.

\(\Leftrightarrow x^2+7-\left(x+4\right)\sqrt{x^2+7}+4x=0\)

Đặt \(\sqrt{x^2+7}=t>0\)

\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)

\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{x+4+x-4}{2}=x\\t=\frac{x+4-x+4}{2}=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vn\right)\\x^2+7=16\end{matrix}\right.\)

Câu 6 bạn coi lại đề

NV
13 tháng 8 2020

4.

ĐKXĐ: ...

Đặt \(\sqrt{x+3}=a\ge0\)

\(\Rightarrow x+a=\sqrt{5x^2-a^2}\)

\(\Rightarrow x^2+2ax+a^2=5x^2-a^2\)

\(\Rightarrow2x^2-ax-a^2=0\)

\(\Rightarrow\left(x-a\right)\left(2x+a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=x\\a=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=x\left(x\ge0\right)\\\sqrt{x+3}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\le0\right)\end{matrix}\right.\)

 

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

NV
6 tháng 8 2020

7/

ĐKXĐ: \(-3\le x\le\frac{2}{3}\)

\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)

\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)

\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)

Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)

\(\Rightarrow4-\sqrt{3-2x}>0\)

\(\Rightarrow VT>0\)

Phương trình vô nghiệm (bạn coi lại đề)

NV
6 tháng 8 2020

5/

\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)

6/

ĐKXĐ: ....

\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)

4 tháng 7 2019

Làm hơi tắt xíu, có gì ko hiểu cmt nha :>

\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)

\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)

4 tháng 7 2019

\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)

Câu cuối chưa nghĩ ra, sorry :<

NV
11 tháng 8 2020

5.

ĐKXĐ: ...

\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)

\(\Leftrightarrow x=5\)

6.

ĐKXĐ: \(-4\le x\le4\)

\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)

\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)

\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)

\(\Rightarrow x=\frac{96}{25}\)

NV
11 tháng 8 2020

1.

Bạn coi lại đề

2.

ĐKXĐ: \(1\le x\le2\)

Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:

\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)

\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

1 tháng 8 2018

\(a\text{) }\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)

\(b\text{) }\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\\ =\sqrt{18+3+2\sqrt{54}}-\sqrt{18+3-2\sqrt{54}}\\ =\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}\\ =\sqrt{18}+\sqrt{3}-\sqrt{18}+\sqrt{3}\\ =2\sqrt{3}\)

\(d\text{) }\sqrt{x+1+2\sqrt{x}}\left(x\ge0\right)\\ =\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)

\(e\text{) }\sqrt{2x+3+2\sqrt{x^2+3x+2}}\left(x\le-2;x\ge-1\right)\\ =\sqrt{\left(x+2\right)+\left(x+1\right)+2\sqrt{\left(x+1\right)\left(x+2\right)}}=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)

Xem lại đề câu c nha.

1 tháng 8 2018

a)\(\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)

b)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)

=\(\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\sqrt{3^2}}\)

=\(\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

=\(3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}\)

=\(2\sqrt{3}\)

c)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)

ÁP dụng HĐT \(\sqrt{a+b}\pm\sqrt{a-b}=\sqrt{2\left(a.\sqrt{a^2\pm b}\right)}\)ta có:

=\(\sqrt{2\left(4+\sqrt{4^2-10-2\sqrt{5}}\right)}\)

=\(\sqrt{2\left(4+\sqrt{16-10-2\sqrt{5}}\right)}\)

=\(\sqrt{2\left(4+\sqrt{6-2\sqrt{5}}\right)}\)

=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.1+1^2}\right)}\)

=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}-1\right)^2}\right)}\)

=\(\sqrt{2\left(4+\sqrt{5}-1\right)}\)

=\(\sqrt{2\left(3+\sqrt{5}\right)}\)

=\(\sqrt{6+\sqrt{5}}=\sqrt{5}+1\)

d)\(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}\right)^2+2\sqrt{x}.1+1^2}=\sqrt{x}+1\)