K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

Câu trả lời bài 1 ý a làm kiểu gì

11 tháng 7 2016

oc cho

Bài 1*:Chứng minh : A = 21+22+23+24+....+22010 chia hết cho 3 và 7 .Bài 2*: So sánha) A = 21+22+23+24+....+22010 và B = 22010- 1b) A = 1030 và B = 2100c) A = 333444 và B = 444333d) A = 3450 và B = 5300Bài 3**:Tìm x \(\varepsilonℕ\)a) x15 = x      b) 2x.(22)2= (23)2      c) (x5)10 = xBài 4*:Tìm chữ số tận cùnga) 21000   b) 4161   c) (32)2010   d) (198)1945Bài 5*:a) n + 3 \(⋮\)n - 1;  b) 4n+ 3 \(⋮\)2n + 1Bài 6**:A = 7+72+73+74+...
Đọc tiếp

Bài 1*:Chứng minh : = 21+22+23+24+....+22010 chia hết cho 3 và 7 .

Bài 2*: So sánh

a) A = 21+22+23+24+....+22010 và B = 22010- 1

b) A = 1030 và B = 2100

c) A = 333444 và B = 444333

d) A = 3450 và B = 5300

Bài 3**:Tìm x \(\varepsilonℕ\)

a) x15 = x      b) 2x.(22)2= (23)2      c) (x5)10 = x

Bài 4*:Tìm chữ số tận cùng

a) 21000   b) 4161   c) (32)2010   d) (198)1945

Bài 5*:

a) n + 3 \(⋮\)n - 1;  b) 4n+ 3 \(⋮\)2n + 1

Bài 6**:A = 7+72+73+74+ 75+76+77+78

a) Số A là số chẵn hay lẻ.

b) Số A chia hết cho 5 ko ?

c) Chữ số tận cùng của A ?

Bài 7 :Khi chia số tự nhiên a cho 36 ta đc số dư là 12 hỏi a có chi hết cho 4 ko ?Có chia hết cho 9 ko ?

Bài 8:

a) Chứng tỏ rằng ab(a+b) \(⋮\)2 (a;b \(\varepsilonℕ\))

b) Chứng minh rằng ab + ba \(⋮\)11.

c) Chứng minh aaa luôn \(⋮\)37

Bài 9 : x + 16 \(⋮\)x +1

 

 

 

10
16 tháng 12 2018

bài 8

c) chứng minh \(\overline{aaa}⋮37\)

ta có: \(aaa=a\cdot111\)

\(=a\cdot37\cdot3⋮37\)

\(\Rightarrow aaa⋮37\)

k mk nha

k mk nha.

#mon

16 tháng 12 2018

Trả lời 1 bài cũng đc

19 tháng 9 2019

Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.

BÀi 12:

S=1 + 2 + 22 + `23 +..........+ 22017

2S=2 + 22 + `23 + 24 +..........+22017 + 22018

Trừ đi hai vế ta được:

S=1 + 22018

10 tháng 10 2020

Câu 1.

C = 5 + 42 + 43 + ... + 42020

a) Xét A = 42 + 43 + ... + 42020

    => 4A = 43 + 44 + ... + 42021

    => 4A - A = 3A

        = 43 + 44 + ... + 42021 - ( 42 + 43 + ... + 42020 )

        = 43 + 44 + ... + 42021 - 42 - 43 - ... - 42020 

        = 42021 - 42

=> A = \(\frac{4^{2021}-4^2}{3}\)

Thế vào C ta được : \(C=5+\frac{4^{2021}-4^2}{3}=\frac{15}{3}+\frac{4^{2021}-4^2}{3}=\frac{4^{2021}+15-16}{3}=\frac{4^{2021}-1}{3}\)

b) D = 42021 => \(\frac{D}{3}=\frac{4^{2021}}{3}\)

Vì 42021 - 1 < 42021 => \(\frac{4^{2021}-1}{3}< \frac{4^{2021}}{3}\)

=> C < D/3

c) Dùng kết quả ý a) ta được :

3C + 1 = 42x-6

<=> \(3\cdot\frac{4^{2021}-1}{3}+1=4^{2x-6}\)

<=> 42021 - 1 + 1 = 42x-6

<=> 42021 = 42x-6

<=> 2021 = 2x - 6

<=> 2x = 2027

<=> x = 2027/2

10 tháng 10 2020

Câu 2.

( x - 1 )( 4 + 22 + 23 + ... + 220 ) = 222 - 221

Xét A = 22 + 23 + ... + 220

=> 2A = 23 + 24 + ... + 221

=> A = 2A - A

         = 23 + 24 + ... + 221 - ( 22 + 23 + ... + 220 )

         = 23 + 24 + ... + 221 - 22 - 23 - ... - 220 

         = 221 - 4

Thế vô đề bài ta được

( x - 1 )( 4 + 221 - 4 ) = 222 - 221

<=> ( x - 1 ).221 = 221( 2 - 1 )

<=> x - 1 = 1

<=> x = 2

20 tháng 9 2020

+) \(A=3\left(x-4\right)^4-4\ge-4\)

Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)

Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

+) \(C=5+2018\left(2020-x\right)^2\)

Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)

+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)

Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)

+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)

Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

11 tháng 10 2020

a, 54

b,52

11 tháng 10 2020

Bạn có thể giải rõ ra ko ?

NÓi cách làm thui cx đc

1 tháng 7 2019

Các bạn giải hộ mình nhoa

17 tháng 11 2018

a)

   \(2A=2+2^2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

b)

  Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)

\(3^2D=3^3+3^5+...+3^{101}\)

\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)

\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)

Tương tự \(E=\frac{3^{102}-3^2}{8}\)

Ta có \(D-E=B\)

Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)

Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)

27 tháng 11 2018

c,\(C=1+5^2+5^4+5^6+...+5^{200}\)

\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)

\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)

\(=5^{202}-1\)

\(\Rightarrow C=\frac{5^{202}-1}{24}\)