\(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\)):
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Ta có :

\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\)

\(P=\left(\dfrac{8+x-4}{\left(x+4\right)\left(x-4\right)}\right):\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)

\(P=\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}:\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)

\(P=\dfrac{1}{x-4}.\left(x+2\right)\left(x-4\right)\)

\(P=\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x-4\right)}\)

\(P=x+2\)

2 . Ta có :

\(x^2-9x+20=0\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

Thay \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) vào biểu thức \(P=x+2\) ta được :

\(\left[{}\begin{matrix}4+2=6\\5+2=7\end{matrix}\right.\)

Kết luận __________________________________

10 tháng 12 2017

ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}x^2-16\ne0\\x+4\ne0\\x^2-2x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+4\right)\ne0\\x\ne-4\\\left(x-4\right)\left(x+2\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne-2\end{matrix}\right.\)

\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\) \(=\left(\dfrac{8}{\left(x-4\right)\left(x+4\right)}+\dfrac{1}{x+4}\right).\left(x^2-2x-8\right)\) \(=\dfrac{8+x-4}{\left(x-4\right)\left(x+4\right)}.\left(x^2-4x+2x-8\right)\) \(=\dfrac{x+4}{\left(x-4\right)\left(x+4\right)}.\left(x-4\right)\left(x+2\right)\) \(=x+2\) + Tính giá trị của P tại x2 - 9x + 20 = 0 \(x^2-9x+20=0\) \(\Rightarrow x^2-4x-5x+20=0\) \(\Rightarrow\left(x^2-4x\right)-\left(5x-20\right)=0\) \(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\left(kot/m\right)\\x=5\left(t/m\right)\end{matrix}\right.\) Thay x = 5 vào biểu thức P ,có : \(5+2=7\) Vậy tại x= 5 giá trị của P là 7

2 tháng 2 2020

a) \(ĐKXĐ:x\ne\pm4;x\ne-2\)

\(P=\left(\frac{8}{x^2-16}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)

\(\Leftrightarrow P=\left(\frac{8}{\left(x-4\right)\left(x+4\right)}+\frac{1}{x+4}\right):\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{8+x-4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{x+4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)

\(\Leftrightarrow P=\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)}\)

\(P=x+2\)

b) Ta có :

\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=x+2=5+2=7\\P=x+2=4+2=6\end{cases}}\)

Vậy \(P\in\left\{7;6\right\}\)

23 tháng 12 2017

\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)

\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{x-4}{\left(x-4\right)\left(x+4\right)}\right)\cdot\frac{x^2-2x-8}{1}\)

\(P=\left(\frac{x+4}{\left(x+4\right)\left(x-4\right)}\right)\cdot x^2-2x-8\)

\(P=\frac{1}{x-4}\cdot x^2-2x-8\)

P\(P=\frac{x^2+2x-4x+8}{x-4}\)

\(P=\frac{x\left(x+2\right)-4\left(x+2\right)}{x-4}\)

\(P=\frac{\left(x-4\right)\left(x+2\right)}{x-4}\)

\(P=x+2\)

14 tháng 1 2018

2 ,\(x^2-9x+20=0\)

\(\Rightarrow x^2-4x-5x+20=0\)

\(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

\(\orbr{\begin{cases}x=5\Rightarrow\\x=4\Rightarrow\end{cases}}\orbr{\begin{cases}P=7\\P=6\end{cases}}\)

9 tháng 2 2017

a/ ĐKXĐ ....

A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

=\(\frac{1}{x}-\frac{1}{x-5}\)

=\(-\frac{5}{x^2-5x}\)

b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)

<=> x=-1, thay vào tính nốt

5 tháng 7 2018
https://i.imgur.com/6tA7uWr.jpg
24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

29 tháng 4 2017

a ) Gọi \(A=\dfrac{3x^2-x}{9x^2-6x+1}\)

Ta có : \(A=\dfrac{x\left(3x-1\right)}{\left(3x\right)^2-2.3x.1+1}=\dfrac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\dfrac{x}{3x-1}\)

Thay x = - 8 và biểu thức A ta được :

\(A=\dfrac{-8}{3.\left(-8\right)-1}=\dfrac{8}{25}\)

Vậy giá trị của biểu thức A là \(\dfrac{8}{25}\) tại x = - 8

b ) Gọi \(B=\dfrac{x^2+3x+2}{x^3+2x^2-x-2}\)

Ta có \(B=\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{x^2\left(x+2\right)-\left(x+2\right)}=\dfrac{x\left(x+1\right)+2\left(x+1\right)}{\left(x^2-1\right)\left(x+2\right)}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x-1}\)

Thay x = 1000001 và biểu thức B ta được :

\(B=\dfrac{1}{1000001-1}=\dfrac{1}{100000}\)

Vậy giá trị của biểu thức B là \(\dfrac{1}{1000000}\) tại x = 1000001

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

27 tháng 11 2018

1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

Vậy \(A=x\)

b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)

Vậy...

2/a,

\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)

\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)

\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)

\(=\dfrac{3x+2}{x\left(3x+2\right)}\)

\(=\dfrac{1}{x}\)

Vậy....

b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)

Vậy..