\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

3. A B C D P Q I

20 tháng 11 2018

Trên tia đối của tia BA lấy I sao cho BI = DQ

\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)

Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)

Ta có: \(AP+AQ+PQ=2AB\)

\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)

\(\Rightarrow PQ=PB+QD\)

\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)

\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)

Câu 1: Xét biểu thức \(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\) a) Tìm điều kiện của a và b để A có nghĩa. Rút gọn A. b) Cho giá trị của biểu thức A sau khi đã rút gọn bằng \(\frac{b+10}{b-10}\left(b\ne10\right)\). Chứng minh rằng \(\frac{a}{b}=\frac{9}{10}\) Câu 2: Rút gọn a)...
Đọc tiếp

Câu 1: Xét biểu thức

\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)

a) Tìm điều kiện của a và b để A có nghĩa. Rút gọn A.

b) Cho giá trị của biểu thức A sau khi đã rút gọn bằng \(\frac{b+10}{b-10}\left(b\ne10\right)\). Chứng minh rằng \(\frac{a}{b}=\frac{9}{10}\)

Câu 2: Rút gọn

a) \(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

Câu 3: Giải phương trình và hệ phương trình sau

a) (x - 2)2 - (x + 3)2 = 2(x - 5)

b) \(\left\{{}\begin{matrix}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{matrix}\right.\)

Câu 4: Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ hai tiếp tuyến Ax và By của mỗi đường tròn (O) và tiếp tuyến thứ ba tiếp xúc với (O) tại điểm M và cắt Ax tại D, cắt By tại E.

a) CM: ΔDOE là tam giác vuông.

b) CM: AD.BE = R2.

c) Xác định vị trí của M trên nửa đường tròn (O) sao cho diện tích ΔDOE đạt giá trị nhỏ nhất.

Câu 5: Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì: n là bội số của 24.

Câu 6: Chứng minh rằng với mọi số thực a, b, c ta có các bất đẳng thức:

a) a4 + b4 ≥ a3b + ab3.

b) a2 + b2 +c2 ≥ ab + bc + ca.

Help me!!!

Thanks trc

5
NV
11 tháng 8 2020

1. ĐKXĐ: \(\left\{{}\begin{matrix}a;b\ge0\\a\ne9\end{matrix}\right.\)

\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{a}\left(\sqrt{b}+2\right)-3\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)}\)

\(=\frac{2\sqrt{a}+3\sqrt{b}}{\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{\left(\sqrt{a}+3\right)\left(2\sqrt{a}+3\sqrt{b}\right)+\left(\sqrt{ab}-6\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(=\frac{2a+9\sqrt{b}+a\sqrt{b}+18}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{a\left(\sqrt{b}+2\right)+9\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}\)

\(=\frac{\left(a+9\right)\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}=\frac{a+9}{a-9}\)

b .

\(\frac{a+9}{a-9}=\frac{b+10}{b-10}\Leftrightarrow\frac{a-9+18}{a-9}=\frac{b-10+20}{b-10}\)

\(\Leftrightarrow1+\frac{18}{a-9}=1+\frac{20}{b-10}\Leftrightarrow\frac{18}{a-9}=\frac{20}{b-10}\)

\(\Leftrightarrow18\left(b-10\right)=20\left(a-9\right)\Leftrightarrow18b=20a\Leftrightarrow\frac{a}{b}=\frac{9}{10}\)

NV
11 tháng 8 2020

3.

\(x^2-4x+4-\left(x^2+6x+9\right)=2x-10\)

\(\Leftrightarrow-10x-5=2x-10\)

\(\Leftrightarrow12x=5\)

b. \(\Leftrightarrow\left\{{}\begin{matrix}17\left(x-y\right)+7\left(2x+y\right)=833\\19\left(4x+y\right)+5\left(y-7\right)=1425\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}31x-10y=833\\76x+24y=1460\end{matrix}\right.\)

Bấm máy

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !